

European Commission

Nuclear Science and Technology

Environmental Radioactivity in the European Community 2015-2020

DG ENER: Nuclear Energy, Safety and ITER DG JRC: Nuclear Safety and Security

This work was performed as part of the Radioactivity Environmental Monitoring) programme in the framework of JRC Support actions to Commission Services, DG ENER Luxembourg

This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission's science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The contents of this publication do not necessarily reflect the position or opinion of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Contact information

Name: Juan Carlos de la Rosa Blul Address: Joint Research Centre, Westerduinweg 3, NL-1755LE Petten, The Netherlands Email: Juan-Carlos.DE-LA-ROSA-BLUL@ec.europa.eu Tel.: +31 (0) 224565955

EU Science Hub

https://joint-research-centre.ec.europa.eu

JRC135787

EUR 31768 EN

PDF ISBN 978-92-68-10117-9 ISSN 1831-9424 (Science for Policy) ISSN 2315-2826 (Radiation protection) doi:10.2760/761877 KJ-NA-31-768-EN-N

Luxembourg: Publications Office of the European Union, 2023

© European Atomic Energy Community, 2023

The reuse policy of the European Commission documents is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Unless otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed provided appropriate credit is given and any changes are indicated.

For any use or reproduction of photos or other material that is not owned by the European Atomic Energy Community, permission must be sought directly from the copyright holders.

How to cite this report: Rood, B. M., Martino, S., Guglielmelli, A., De La Rosa Blul, J. C., De Cort, M., Tollefsen, T., Marin Ferrer, M., Vanzo, S., Hernandez Ceballos, M. A., Cinelli, G., Sangiorgi, M., Nweke, E., De Felice, L., Tognoli, P. V. and Tanner, V., *Environmental Radioactivity in the European Community 2015-2020*, Publications Office of the European Union, Luxembourg, 2023, doi:10.2760/761877, JRC135787.

PREFACE

Under the terms of Article 36 of the Euratom Treaty, European Union Member States shall periodically communicate to the Commission information on environmental radioactivity levels on their national territory. Since the early 1960s, the Commission has compiled and published this information as a series of reports. The current report, covering the years 2015 to 2020, is the 36th in the series.

This report endeavours to improve the clarity of information on levels of radioactivity in the European environment by making use of standardised reporting levels. These reporting levels are supported by more detailed radioactivity levels from a limited number of stations that provide high sensitivity measurements.

As part of its DG Energy support programme, the Directorate for Nuclear Safety and Security of the EC Joint Research Centre (JRC) has introduced all environmental radioactivity results received from the Member States into the Radioactivity Environmental Monitoring (REM) database. The JRC collated, checked and loaded the data, prepared the tabulations and figures as appropriate and provided the draft of the report. I would like to express my gratitude for the JRC's assistance and for the cooperation provided by the national authorities who supplied the original data.

This report is addressed to all who are concerned with radioactivity in the European environment.

M. Garribba Deputy Director-General Responsible for the coordination of Euratom policies and Energy Union financing instruments Directorate-General Energy

CONTENTS

I. INTRODUCTION	5
A. General	5
B. Structure of the report	6
C. Geographical divisions	6
II. AIRBORNE PARTICULATES	6
III. SURFACE WATER	7
IV. DRINKING WATER	7
V. MILK	7
VI. MIXED DIET	8
RELATED INFORMATION	8
REFERENCES	8
DENSE NETWORK RESULTS	12
 Airborne particulates 	12
· Gross-β	12
· Caesium-137	24
Surface water	36
· Residual-β	62
· Caesium-137	98
 Drinking water 	134
· Tritium	134
· Strontium-90	146
· Caesium-137	158
· Milk	170
· Strontium-90	170
· Caesium-137	182
 Mixed diet 	194
· Strontium-90	194
· Caesium-137	206
SPARSE NETWORK RESULTS	219
 Airborne particulates 	219
· Beryllium-7	220
· Caesium-137	227
Surface water	235
· Caesium-137	236
 Drinking water 	245
· Tritium	246
· Strontium-90	253
· Caesium-137	258

· Milk	265
· Strontium-90	266
· Caesium-137	274
· Mixed diet	283
· Strontium-90	284
· Caesium-137	290
APPENDICES	298
A: Origins And contents of Articles 35 And 36	298
B: Method for calculating the reporting levels	299
C: Methods for calculating time and geographical averages	300
D: Addresses of national competent authorities and laboratories	301
E: Bibliography Data sources	307
F: The REM Data bank	312
G: List of figures and tables	313
GLOSSARY	319

I INTRODUCTION

A. General

This report presents a summary of the available data on levels of radioactivity in some environmental media in the European Union (EU) Member States for the years 2015 -2020. These data are obtained from official reports published by the responsible authorities and from data transmitted directly to the Commission by the national authorities and from individual laboratories. Member States provide environmental radioactivity data to the EU to comply with Articles 35 and 36 of the Euratom Treaty (see Appendix A). Continuous or semi-continuous monitoring of air and water is undertaken in Member States. Monitoring of food products, such as milk or mixed diet is considered an acceptable surrogate for the Article 35 requirement to monitor soil¹.

Individual monitoring laboratories tend to retain measurement techniques that have proven reliable over the years and are of sufficient sensitivity for radiological protection purposes. Measurement techniques, and thus measurement sensitivities, may, therefore, vary between laboratories and countries. This can make the interpretation and comparison of data across Europe difficult.

In order to facilitate the presentation of the results, it has been agreed² to use uniform reporting levels (see Appendix B) as a benchmark. If the results for a certain sample type radionuclide combination are above their corresponding reporting level (RL), then the measured values are stated in this report. Otherwise they are reported as "< RL". Measured values are submitted either as a specific number or as known to be less than a certain value. When only known to be less than a certain value, the measured value is referred to as a constraint (<) value. Constraint (<) values above the corresponding reporting level are not considered in the calculations for this report. If the results for a certain sample type - radionuclide combination consist only of constraint (<) values above the reporting level, this is indicated with the Δ symbol in data tables. The reporting levels used in this report were derived such that they would indicate a resultant effective dose value of 1/1000th of a mSv (0.001 mSv).

It must be emphasised that the reporting levels are only meant to be a tool for presenting data and should not be confused with maximum permitted levels of radioactive contamination.

Radiation in the environment comes from space, from the earth, from air, from water, food and other natural sources. It also comes from radioactive waste, consumer products, atmospheric nuclear weapons testing and other artificial sources. Ionising radiation from natural and artificial sources do not differ in kind or effect on humans. The world average effective dose from all sources of radiation is 3.0 millisievert (mSv) per year (2.4 mSv for natural sources and 0.6 mSv for artificial)³ [2]. Across the Member States of the European Community the annual effective dose for members of the public from natural sources ranges from about 1.5 mSv to just above 6 mSv, with a population-weighted average annual effective dose of 3.2 mSv^4 [2].

In normal circumstances, variations in time and space for the data from the many sampling locations which are distributed all over the Member States' territories (referred to as the "**dense network**"⁵ [1]) are gradual. For this reason daily, weekly or even monthly variations per sample location are not of radiological significance. The data are therefore presented as regional averages (Table 1) except for surface water where on single sample locations is reported.

Although most values are below reporting levels, it is valuable to present the actual concentrations for a small number of locations. This allows any trends in radionuclide concentrations to be monitored over time. To achieve this, a number of representative locations were selected, this is referred to as the "**sparse network**"⁶ [1]. High sensitivity measurements are performed at these locations and the individual results are presented graphically.

As in the previous report [3], the following combinations of sample and radionuclide categories are reported, as per the Commission Recommendations to Article 36 of the Euratom Treaty (2000/473/Euratom) [1] also mentioned in Appendix A:

Sampling media	Radionuclide categories			
	Dense network	Sparse network		
airborne particulates	gross ß ¹³⁷ Cs	⁷ Be ¹³⁷ Cs		
surface water	residual	¹³⁷ Cs		
drinking water	³ H ⁹⁰ Sr ¹³⁷ Cs	³ H ⁹⁰ Sr ¹³⁷ Cs		
milk	⁹⁰ Sr ¹³⁷ Cs	⁹⁰ Sr ¹³⁷ Cs		
mixed diet	⁹⁰ Sr ¹³⁷ Cs	⁹⁰ Sr ¹³⁷ Cs		

¹ According to [1], "The monitoring of levels of radioactivity in soil does not allow a direct assessment of the exposure of the population. The exposure related to soil contamination is more directly assessed on the basis of ambient dose rate and foodstuff contamination. Experience has shown that the incorporation of soil data in the monitoring serves little useful purpose".

² Official Journal of the European Communities L 191, 27.07.2000, p. 9 (Annex III).

³ European Atlas of Natural Radiation, Publication Office of the European Union, Luxembourg, 2019, p. 32.

⁴ European Atlas of Natural Radiation, Publication Office of the European Union, Luxembourg, 2019, p. 173.

⁵ Official Journal of the European Communities L 191, 27.07.2000, p. 2.

⁶ Official Journal of the European Communities L 191, 27.07.2000, p. 2.

However, not all of the above combinations of sample and nuclide type are routinely monitored by each Member State.

Every effort has been made to collect all the available data, thus, most of the blank entries correspond to the absence of measurements. In some cases, the available results may have not been received.

All the radionuclides sampled, except strontium-90 (90 Sr) and caesium-137 (137 Cs), can be of either natural or artificial origin. The two exceptions are of artificial origin, mainly from past atmospheric weapons testing and from radioactive routine or accidental discharges from nuclear facilities.

The sampling locations incorporated in this report are intended to be as representative as possible of regional or national situations. However, while measurements local to and possibly influenced by nuclear installations have been discounted wherever practical, in certain cases national data are strongly dependent on such monitoring programmes.

B. Structure of the report

This report is composed of three main parts:

The **text part** consists of a general introduction followed by one chapter for each medium; this includes general information on the sample type, the occurrence of natural radionuclides therein, a description of sample preparation and analysis and a short discussion of the results.

The **results** are presented by sample and nuclide type, sample types are identified with appropriate symbols. All data from the dense network is presented, followed by that from the sparse network.

- The dense network results are presented graphically (with the exception of surface water as this sample type does not allow for geographical presentation) and in tabular form. The graphical representation illustrates the annual average radioactivity concentrations for each geographical region (see Section C). Four shades are used to indicate the concentrations on a scale ranging from less than the reporting level to ten times the reporting level. In addition, each sampling location is indicated. Next to the graphical representation the results are presented in tabular form. These results are averaged over geographical regions and over a particular time period (quarter, semester or whole year, depending on the availability of data). The total number of sampling locations and the number of measurements used to calculate the annual averages are given for each geographical region. In addition, the monthly maximum and the month in which this occurred are given for those values above the appropriate reporting level.
- The results for the sparse network are preceded by a map illustrating the sampling locations. The data are presented as time versus activity concentration graphs from 1984 onwards (where the data is available). Between one and three nearby locations are illustrated on each graph. Full lines represent actual sampling periods whereas dotted lines link measurement results

over unsampled time periods. The appropriate reporting level is indicated by a horizontal line. The choice of 1984 as a start date enables the pulse of radioactivity which entered the environment of the EU from the 1986 Chernobyl accident in the Ukraine to be seen clearly.

The **appendices** to this report provide additional information on the Euratom Treaty, the calculation of reporting levels, the averaging procedures used, the data sources, the bibliography and information about the REM data bank. The addresses of the national authorities and laboratories that contributed to this report are given in Appendix D, while the national reports of environmental monitoring data are given in Appendix E. All data presented in this report are also stored in the REM data bank, at the JRC-Ispra, Italy (see Appendix F), and can be accessed with the REMdb online query described in the "Related Information" section at the end of this introduction.

Finally, and with the aim of enlarging the readership of this report, a glossary provides background information on frequently used terms in radiation protection.

C. Geographical divisions

For the larger Member States the data is divided according to geographical divisions. The partitioning of Croatia, Germany, Finland, France, Italy, Poland, Romania, Spain, Sweden and the United Kingdom has been based on administrative regions (Table 1) and results in a total of 47 geographical divisions of the EU (Figure 1).

II. AIRBORNE PARTICULATES

Airborne radioactive materials may occur in either gaseous or particulate form. In general, the latter is of greater potential radiological significance because it may be deposited and hence remain in the local environment. Consequently, most national routine monitoring networks measure only the particulate component. Atmospheric radioactivity is dominated by the naturally occurring, short-lived particulate decay products of gaseous radon (Rn = 1 to 20 Bq m⁻³ in outdoor air) [2]. Measurements of "total beta" radioactivity in airborne particulates must allow for this naturally occurring radioactivity. Other naturally occurring radioactivity. Other naturally occurring radioactivity. Other naturally occurring radionuclides measured in airborne particulates include beryllium-7 (⁷Be) and potassium-40 (⁴⁰K).

Airborne particulate **sampling** is carried out by pumping air through filters at a flow rate of several hundred cubic meters per day. In most countries filters are changed daily and analysed for total beta activity following the decay of radon decay products. Individual radionuclide analyses are performed weekly, monthly or quarterly. Manmade alpha-emitting aerosols are rarely measured by routine monitoring networks as they are usually undetectable, even close to the nuclear installations where they are produced. Therefore, these measurements are not presented in this report. The sampling locations in the EU for gross beta and ¹³⁷Cs, considered in this report, are illustrated on the maps in figs. A1 - A6 and A7 - A12, respectively.

Minimal **treatment** of the air filters is required, on the whole, they are measured directly or they may be ashed or compressed to improve the counting geometry and hence counting efficiency.

Results: Most Member States have provided **gross beta** (**gross-B**) data (Tables A1 – A6) and ¹³⁷Cs data (Tables A7 – A12) for the dense network. For the sparse network those stations were selected that provide a good coverage of the European territory and for which measurable concentrations were reported. The results for the naturally occurring ⁷Be and artificial radionuclide ¹³⁷Cs are given in Figures A14 to A28 and Figures A29 to A43, respectively. The ¹³⁷Cs activity concentration trends clearly show the 'Chernobyl peak' (26 April - 10 May 1986), followed by a return to pre-Chernobyl concentration values. The Chernobyl-peak values may differ by several orders of magnitude at different locations, due to differences in the airborne activity and also differences in the sampling time used (ranging from hours to weeks).

III. SURFACE WATER

Surface water is one of the compartments into which authorised discharges of radioactive effluents from nuclear installations are made. Radionuclides in surface waters can be found in the water phase or associated with suspended particles and can eventually become incorporated into sediments and living species. Natural radionuclides in river water include ³H at levels of 0.02 - 0.1 Bq Γ^{-1} , ⁴⁰K (0.04 - 2 Bq Γ^{-1}), radium, radon and their short-lived decay products (< 0.4 - 2 Bq Γ^{-1}). The main fraction of tritium (³H) in surface water however is due to man's activities.

Samples are either taken continuously and bulked for monthly or quarterly analysis, or alternatively, spot samples are taken periodically several times a year and analysed individually. Some laboratories remove suspended material from the water sample for separate analysis.

Treatment of the water may consist of filtration or evaporation (for direct measurement of the residue), ion-exchange and subsequent washing of the ion exchange column. More elaborate chemical separation techniques are used to determine radionuclides such as strontium-90 (90 Sr). To determine ³H concentrations, generally the water is multiple distilled.

Results: Most of the sampling locations considered (Fig. S1 to S10) lie on rivers into which authorised discharges of radioactive effluents are made. Surface water samples may, therefore, contain detectable radioactive contaminants traceable to installations at appreciable distances upstream from the sampling locations and this appears to be reflected in some cases in the results obtained. Furthermore, this has the effect of clouding the usual distinction made between sampling carried out for the purposes of general environmental monitoring and that for the surveillance of nuclear power plants. Nevertheless, since the rivers in question are all water courses of major

significance, the results have been considered to be nationally representative.

The results on beta activity given here (Tables S1 – S36) refer to **residual-ß** (total beta less natural 40 K activity). For France, the national reports indicate total beta for the water phase and for suspended matter, and the potassium content separately; the residual beta activity was calculated using a conversion factor of 27.6 Bq g⁻¹ potassium. Also 137 Cs is reported (Tables S37 – S72).

For the sparse network those stations were selected for which measurable concentrations of ¹³⁷Cs were reported and which provided a good coverage of the European territory on major rivers and in the sea (Fig. S11). The results are presented in Figs. S12 to S27.

It should be noted that while some above average values appear to be associated with discharges from nuclear installations the results are still well below levels which might be considered of any significance in terms of health.

IV. DRINKING WATER

Drinking water is monitored because of its vital importance for man, even though a severe radioactive contamination of this medium is rather improbable. The most important natural radionuclides in drinking water are ³H (0.02 - 0.4 Bq l⁻¹), ⁴⁰K (typically 0.2 Bq l⁻¹ but varies greatly), radium, radon and their short-lived decay products (0.4 - 4.0 Bq l⁻¹). Occasionally, the presence of ³H and radium may also be due to man's activities.

Samples may be taken from ground or surface water supplies, from water distribution networks, mineral waters etc. Spot samples are taken a few times a year and analysed individually or samples are taken daily and bulked for monthly or quarterly analysis.

Sample **treatment** usually consists of sample evaporation for direct measurement of the concentrate or separation on ion-exchange columns. More elaborate chemical separations are required for ⁹⁰Sr determination, whereas ³H is generally measured following multiple distillation of the sample.

Results: ³H values are presented in Tables W1 – W6. For the sparse network, thirty stations reported measured concentrations (Figs. W20 to W34). For ⁹⁰Sr the levels are shown in Tables W7 – W12 and, for the sparse network, in Figs. W35 to W44. For ¹³⁷Cs the results are presented in Tables W13 – W18 and, for the sparse network, in Figs. W45 to W57.

V. MILK

Consumption of milk and dairy products has been shown to be one of the most important pathways for uptake of radionuclides from environment to man.

Samples are mostly taken at dairies covering large geographical areas in order to obtain representative samples. They are generally taken on a monthly basis; but

sometimes only during the pasture season. The samples may be analysed separately or bulked for regional or national average evaluations.

Treatment usually consists of drying the sample for gamma spectroscopic analysis and chemical separation for 90 Sr.

Results: Generally the concentrations of the stable elements calcium (Ca) and potassium (K) are determined because of the similarity of their metabolic behaviour with strontium (Sr) and caesium (Cs) respectively. Typical values in milk are 1 to 2 g l⁻¹ for calcium and potassium. The average radioactive concentrations reported in the tables were mainly calculated from data which were themselves averages in time (daily, weekly or monthly) and space. For ⁹⁰Sr quarterly averages are shown in Tables M1 – M6. ¹³⁷Cs quarterly averages are presented in Tables M7 - M12.

VI. MIXED DIET

The aim of measuring radioactivity in mixed diet is to get "integral" information on the uptake of radionuclides by man via the food chain. Rather than expressing the radioactivity content of foodstuffs per unit weight, it is more appropriate to estimate the activity consumed per day per person (Bq d⁻¹ p⁻¹). An important natural radionuclide is ⁴⁰K (typically 100 Bq d⁻¹ p⁻¹).

Foodstuffs can be measured as separate ingredients. However, due to differences in the composition of national diets, the trend is to sample complete meals to give a representative figure for the contamination of mixed diet. Nevertheless knowledge of the contamination of the individual ingredients together with the composition of the national diet can also lead to a representative figure.

Samples are taken as ingredients or as complete meals, mostly at places where many meals are consumed (i.e. factory restaurants, schools).

Treatment usually consists of mixing the sample prior to gamma spectroscopic measurement of ¹³⁷Cs and chemical separation to determine the ⁹⁰Sr activity.

Results: Generally the concentrations of the stable isotopes of calcium and potassium are determined because of the similarity of their metabolic behaviour with strontium and caesium, respectively. Typical values in mixed diet are 0.7 to $1.5 \text{ g} \text{ d}^{-1} \text{ person}^{-1}$ for calcium and 3 to 4 g d⁻¹ person⁻¹ for potassium. For ⁹⁰Sr the quarterly averages are shown in Tables D1 – D6. The sparse network results are presented in Figs. D14 – D25. ¹³⁷Cs quarterly averages are given in Tables D7 – D12. The measurements reported by the sparse network stations shown in the report clearly show a decreasing trend of caesium contamination in mixed diet after the Chernobyl accident (Figs. D26 to D39).

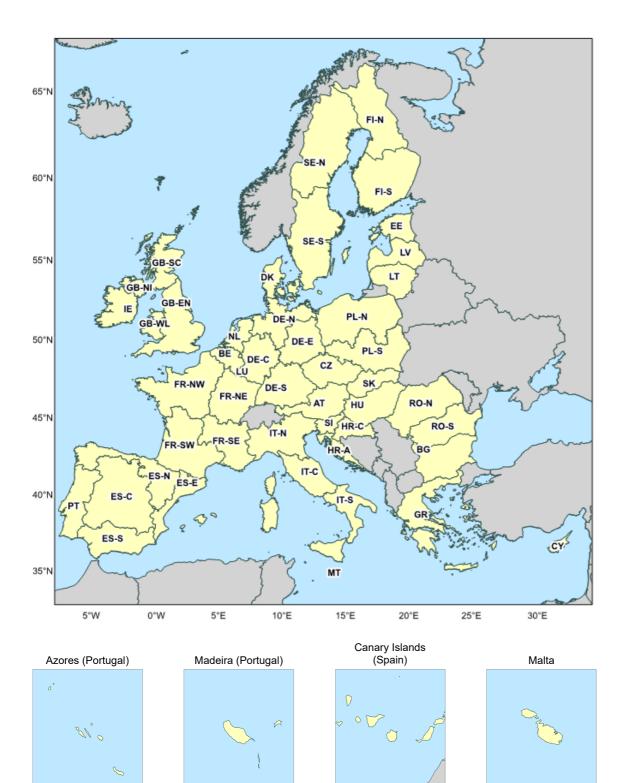
RELATED INFORMATION

Monitoring Reports available in electronic format

The list of all the published (and downloadable) Monitoring Reports is available here:

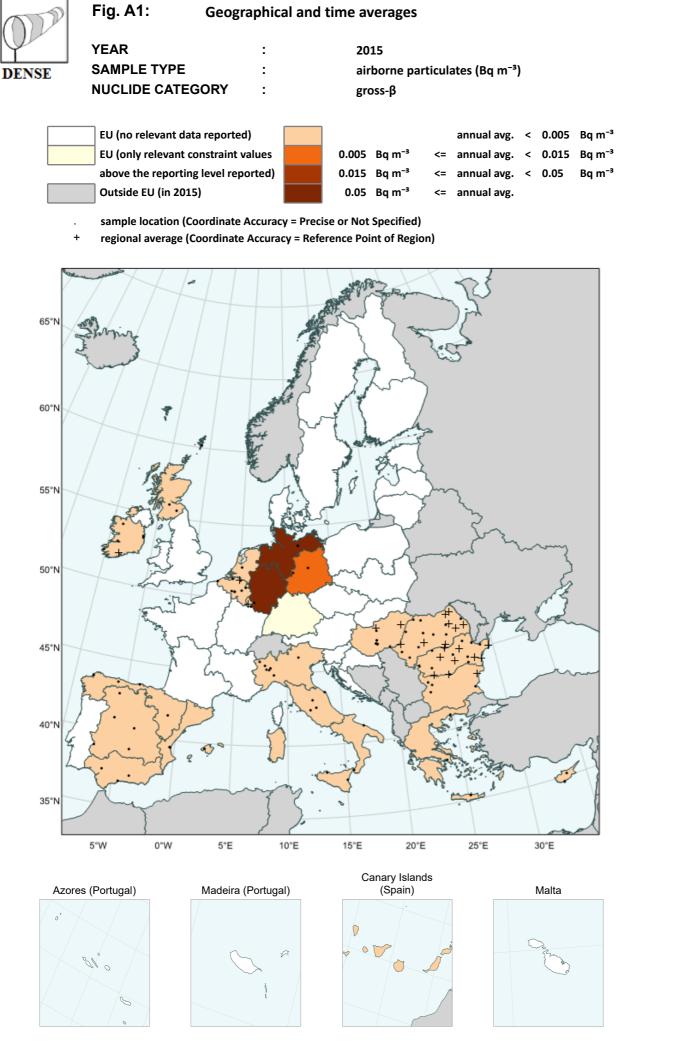
https://remon.jrc.ec.europa.eu/About/Environmental-Monitoring/Monitoring-Reports-Download

REMdb online query


Although the Monitoring Reports describe the collected information as complete as possible, this communication medium does not allow to show the amount of data in all its details. A new interface, called REMdb Query, provides an interactive access to the collected and verified environmental monitoring data in the European Union.

The new interface can be accessed from the "Maps" section, Routine Monitoring icon of web site <u>https://remon.jrc.ec.europa.eu/</u> or directly from:

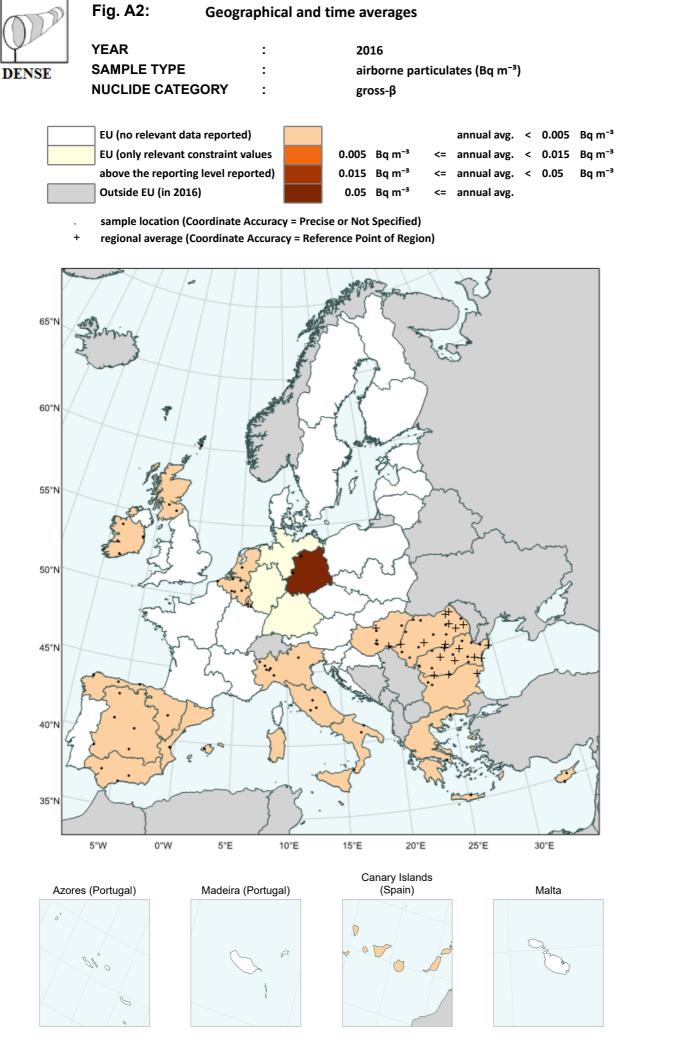
https://remap.jrc.ec.europa.eu/Routine.aspx


REFERENCES

- 1. Commission Recommendation 2000/473/Euratom, OJ L191 of 27.7.2000
- G. Cinelli, M. De Cort and T. Tollefsen, "European Atlas of Natural Radiation", Publication Office of the European Union, Luxembourg, 2019
- M. De Cort, T. Tollefsen, M. Marin Ferrer, J. C. De La Rosa Blul, S. Vanzo, M. A. Hernandez Ceballos, G. Cinelli, E. Nweke, B. Rood, L. De Felice, S. Martino, P. V. Tognoli and V. Tanner, "Environmental Radioactivity in the European Community 2012-2014", EUR 31338, 2023

Table 1Definition of country partitions. Country codes according to ISO 3166/4217

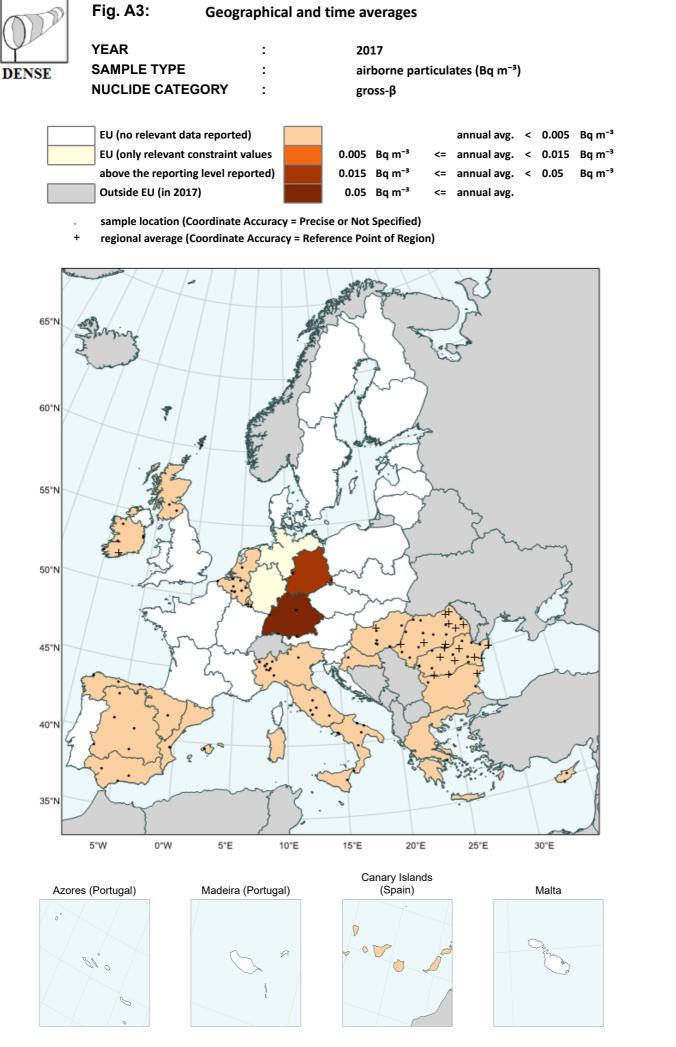
Country	Short description	Detailed description
AT	Austria	
BE	Belgium	
BG	Bulgaria	
CY	Cyprus	
CZ	Czech Republic	
DE-N	Germany - North	Bremen, Hamburg, Mecklenburg-Vorpommern, Niedersachsen and Schleswig- Holstein
DE-C	Germany - Central	Hessen, Nordrhein-Westfalen, Rheinland-Pfalz and Saarland
DE-S	Germany - South	Baden-Württemberg and Bayern
DE-E	Germany - East	Berlin, Brandenburg, Sachsen, Sachsen-Anhalt and Thüringen
DK	Denmark	
EE	Estonia	
ES-N	Spain - North	Aragon, Asturias, Cantabria, Galicia, Navarra, Pais Vasco and Rioja
ES-C	Spain - Central	Castilla - La Mancha, Castilla - Leon, Extramadura and Madrid
ES-S	Spain - South	Andalucia, Canarias, Ceuta y Melilla and Murcia
ES-E	Spain - East	Baleares, Cataluña and C. Valenciana
FI-N	Finland - North	Lapland and Oulu
FI-S	Finland - South	Western Finland, Eastern Finland, Southern Finland
FR-NW	France - Northwest	Bretagne, Centre, lle de France, Nord-Pas-de-Calais, Haute Normandie, Basse Normandie, Pays de la Loire and Picardie
FR-NE	France - Northeast	Alsace, Bourgogne, Champagne-Ardennes, Franche-Comté and Lorraine
FR-SW	France - Southwest	Aquitaine, Languedoc-Roussillon, Limousin, Midi-Pyrénées and Poitou-Charentes
FR-SE	France - Southeast	Auvergne, Corse, Provence-Alpes-Côte-d'Azur and Rhône-Alpes
GB-EN	United Kingdom - England	
GB-WL	United Kingdom - Wales	
GB-SC	United Kingdom - Scotland	
GB-NI	United Kingdom - Northern Ireland	
GR	Greece	
HR-A	Croatia - Adriatic	Primorsko-goranska, Licko-senjska, Zadarska, Šibensko-kninska, Splitsko- dalmatinska, Istarska, Dubrovacko-neretvanska
HR-C	Croatia - Continental	Grad Zagreb, Zagrebacka, Krapinsko-zagorska, Varaždinska, Koprivnicko- križevacka, Medimurska, Bjelovarsko-bilogorska, Viroviticko-podravska, Požeško- slavonska, Brodsko-posavska, Osjecko-baranjska, Vukovarsko-srijemska, Karlovacka, Sisacko-moslavacka
HU	Hungary	
IE	Ireland	
IT-N	Italy - North	Emilia-Romagna, Friuli-Venezia-Giulia, Liguria,Lombardia, Piemonte, Trentino Alto Adige, Val d'Aosta and Veneto
IT-C	Italy - Central	Abruzzo, Lazio, Marche, Molise, Toscana and Umbria
IT-S	Italy - South	Basilicata, Calabria, Campania, Puglia, Sardegna and Sicilia
LT	Lithuania	
LU	Luxembourg	
LV	Latvia	
MT	Malta	
NL	The Netherlands	
PL-N	Poland - North	Kujawsko-Pomorskie, Lubuskie, Mazowieckie, Podlaskie, Pomorskie, Warminsko Mazurskie, Wielkopolskie, Zachodniopomorskie
PL-S	Poland - South	Dolnoslaskie, Lubelskie, Lodzskie, Malopolskie, Opolskie, Podkarpackie, Slaskie, Swietokrzyskie
PT	Portugal	
RO-N	Romania - North	Alba, Arad, Bacau, Bihor, Bistrita-Nasaud, Botosani, Brasov, Caras-Severin, Cluj, Covasna, Harghita, Hunedoara, Iasi, Maramures, Mures, Neamt, Salaj, Satu- Mare, Sibiu, Suceava, Timis and Vaslui
RO-S	Romania - South	Arges, Braila, Bucuresti-Ilfov, Buzau, Calarasi, Constanta, Dambovita, Dolj, Galati, Giurgiu, Gorj, Ialomita, Mehedinti, Olt, Prahova, Teleorman, Tulcea, Valcea and Vrancea
SE-N	Sweden - North	Övre Norrland and Mellersta Norrland
SE-S	Sweden - South	Stockholm, Östra Mellansverige, Sydsverige, Norra Mellansverige, Småland med öarna and Västsverige
SI	Slovenia	
SK	Slovakia	


Table A1: Geographical and time averages

YEAR : 2015 SAMPLE TYPE : airborne particulates (Bq m⁻³) NUCLIDE CATEGORY : gross-β

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT									
BE	2491	8	< RL	< RL	< RL	< RL	< RL	< RL	12
BG	12	6	< RL	< RL	< RL	< RL	< RL	< RL	9
CY	193	2	< RL	< RL	< RL	< RL	< RL	< RL	12
CZ					0.05.01		0.05.04	0.05.01	
DE-N	2	1			2.0E-01	4 25 04	2.0E-01	2.0E-01	7
DE-C DE-S	4	1				1.3E-01	1.3E-01 ∆	1.3E-01	12
DE-S DE-E	8	2	< RL	2.3E-02			⊥ 1.4E-02	2.3E-02	4
DE-E DE	0 14	2 4	< RL < RL	2.3E-02 2.3E-02	2.0E-01	1.3E-01	8.9E-02	2.3E-02 2.0E-01	4 7
DK	14	4	S NL	2.32-02	2.02-07	1.52-01	0.92-02	2.02-01	
EE									
ES-N	211	4	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-C	261	5	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	12
ES-S	158	3	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-E	158	3	< <i>RL</i>	< RL	< <i>RL</i>	< RL	< RL	< RL	12
ES	788	15	< RL	< RL	< RL	< RL	< RL	< RL	12
FI-N									
FI-S									
FI									
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN									
GB-WL									
GB-SC	33	3	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI									
GB	33	3	< RL	< RL	< RL	< RL	< RL	< RL	1
GR	343	3	< RL	< RL	< RL	< RL	< RL	< RL	8
HR-A									
HR-C									
HR	400	10	< RL	< RL	< RL	< RL	< RL	< RL	
HU	496 72	10	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	3
IE IT-N	1219	6 7	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	11 12
IT-N	729	4	< RL < RL	< RL < RL	< RL	< RL	< RL	< RL < RL	12
IT-C	554	4	< RL < RL	< RL	< RL	< RL	< RL	< RL < RL	8
IT-S	2502	4 15	< RL < RL	< RL < RL	< RL	< RL	< RL	< RL < RL	12
LT	2002	,0	- , \L	- AL	- NE	- 112	- //L	- 112	. 2
LU	77	2	< RL	< RL	< RL	< RL	< RL	< RL	12
LV		-						,,	
MT			<u> </u>						
NL	53	1	< RL	< RL	< RL	< RL	< RL	< RL	10
PL-N									
PL-S									
PL									
PT								1	
RO-N	12896	19	< RL	< RL	< RL	< RL	< RL	< RL	1
RO-S	14076	18	< RL	< RL	< RL	< RL	< RL	< RL	1
RO	26972	37	< RL	< RL	< RL	< RL	< RL	< RL	1
SE-N									
SE-S									
SE									
SI									
SK									
				-	-	-		-	

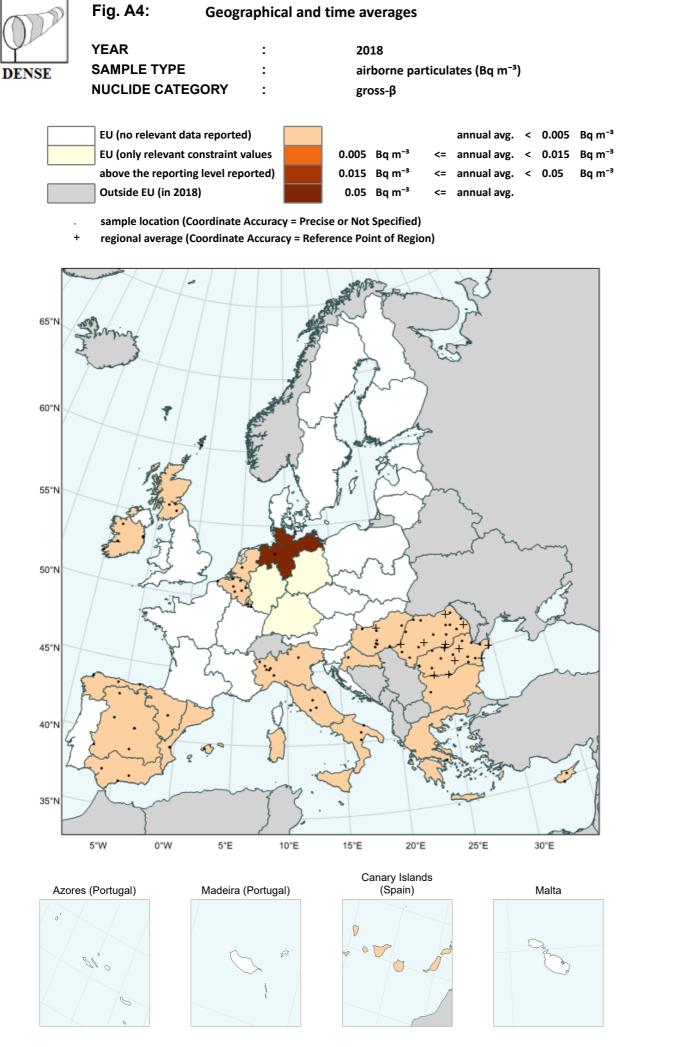
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.


Table A2: Geographical and time averages

YEAR:2016SAMPLE TYPE:airborne particulates (Bq m⁻³)NUCLIDE CATEGORY:gross-β

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
BE 2556 8 $< RL$				quarter	quarter	quarter	quarter	average		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		218	2	< RL	8					
DE-C 2 2 2 1.2E-01 <										
DE-S 2 2 2 1.2E-01 1.2E-01 4 6.0E-02 1.2E-01 4 DR 2 2 2 1.2E-01 4 6.0E-02 1.2E-01 4 DR 2 2 2 1.2E-01 4 6.0E-02 1.2E-01 4 DR 2 1 4 <rl< th=""> <rl< th=""> <rl< th=""> <rl< th=""> <rl< th=""> 4 RL 1.2E-01 4 DR 211 4 <rl< th=""> 100 ESS 159 3 <rl< th=""> NL NL</rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>										
DE-E 2 2 12E-01 <rl< th=""> 6.0E-02 1.2E-01 4 DE 2 2 1.2E-01 <rl< th=""> 6.0E-02 1.2E-01 4 DE 2 2 1.2E-01 4 DE 2 2 1.2E-01 4 EE 211 4 CRL <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></rl<></rl<>										
DE 2 2 1.2E-01 < RL		2	2		1 2E-01		< RI		1 2E-01	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							1			
EE ·			-					0.02 02		
ES-C 260 5 < RL	EE									
ES-S 159 3 < RL	ES-N	211	4	< RL	10					
ES-E 156 3 < RL	ES-C	260	5	< RL	10					
ES 786 15 < RL	ES-S	159	3	< RL	9					
FLN FL Image: Second seco	ES-E	156	3			< RL	< RL		< RL	10
FLS Image: Section of the section o	ES	786	15	< RL	10					
FI Image: Section of the sectin of the section of the section of the section of the section of	FI-N									
FR.NW FR-SE FR R.W R										
FR-NE FR-SVE FR See Image: See See See See See See See See See S										
FR.SW FR.SE FR Image: Section of the sect										
FR-SE FR Image: Second se										
FR Image: Second s	-									
GB-EN GB-NI GB-SC 36 3 < RL 10 GB-SC 36 3 < RL 10 GB 36 3 < RL										
GB-WL GB-SC 36 3 < RL										
GB-SC GB-NI GB 36 3 < RL										
GB-NI GB 36 3 < RL		36	3	< RL	10					
GB 36 3 < RL			-							
HR-A HRC HR HU 443 8 < RL	GB	36	3	< RL	10					
HR-C HR Image: Marking the second secon	GR	201	3	< RL	< RL	< RL		< RL	< RL	8
HR 443 8 < RL	HR-A									
HU 443 8 $< RL$ $<$	HR-C									
IE 70 6 $< RL$ $< $	HR									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
IT-C 606 4 $< RL$										
IT-S 570 3 $< RL$ 10 IT 2742 14 $< RL$							1			
IT 2742 14 $< RL$							1			
LT Image: constraint of the second secon							1			
LU782< RL		2/42	14	< RL	< RL	< RL	S RL	< RL	< RL	12
LV Image: Signal system of the system o		78	2	< RI	a					
MTImage: Signal systemImage: Signal systemNL531< RL< RL< RL< RL< RL< RL9PL-NPL-SImage: Signal systemImage: Signal system <td< th=""><th>LV</th><th>70</th><th>2</th><th>- 116</th><th>- 116</th><th>-116</th><th>-116</th><th>- 116</th><th>- 116</th><th></th></td<>	LV	70	2	- 116	- 116	-116	-116	- 116	- 116	
NL531< RL	MT									
PL-N PL-S PL PL Image: Section of the s	NL	53	1	< RL	9					
PL Image: Marcine and Marc	PL-N									
PT Image: Constraint of the state of the st	PL-S									
RO-N 14413 18 < RL	PL									
RO-S 17183 18 < RL	PT									
RO 31596 36 < RL	RO-N	14413	18							7
SE-N SE-S SE SE SI SI<	RO-S		18	< RL		< RL			< RL	3
SE-S SE SI Image: Simple state	RO	31596	36	< RL	2					
SE Image: SI Image: SI Image: SI Image: SI	SE-N									
SI I I I I I I I I I I I I I I I I I I										
	SE									
SK										
	SK									

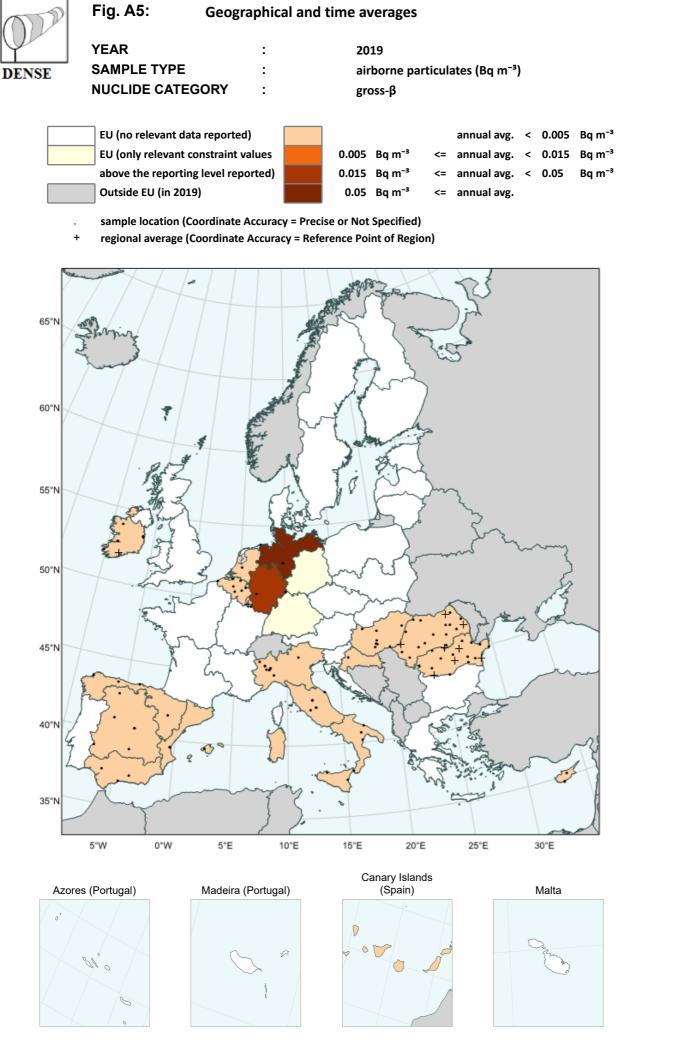
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.


Table A3: Geographical and time averages

YEAR : 2017 SAMPLE TYPE : airborne particulates (Bq m⁻³) NUCLIDE CATEGORY : gross-β

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT									
BE	2159	10	< RL	< RL	< RL	< RL	< RL	< RL	10
BG CY	5	4	< RL	< RL	< RL < RL	4 05 00	< RL < RL	< RL	6
CZ	128	2	< RL	< RL	< RL	1.3E-02	< RL	2.9E-02	12
DE-N							Δ		
DE-C									
DE-S	5	4	1.6E-01		5.0E-01	< RL	2.2E-01	5.0E-01	8
DE-E	4	2				3.7E-02	3.7E-02	3.7E-02	10
DE	9	6	1.6E-01		5.0E-01	1.2E-02	2.2E-01	5.0E-01	8
DK									
EE									
ES-N	210	4	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-C	259	5	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-S	159	3	< <i>RL</i>	< RL	< <i>RL</i>	< RL	< RL	< <i>RL</i>	10
ES-E	158	3	< RL	< RL	< RL	< RL	< RL	< RL	6
ES FI-N	786	15	< RL	< RL	< RL	< RL	< RL	< RL	10
FI-N FI-S									
FI									
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN									
GB-WL									
GB-SC	36	3	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI			. 5/		. 5/			. 5/	
GB GR	36	3	< RL	< RL < RL	< RL	< RL	< RL	< RL	1 7
HR-A	102	1	< RL	< RL	< RL	< RL	< RL	< RL	/
HR-C	1	1				< RL	< RL	< RL	12
HR	1	1				< RL	< RL	< RL	12
HU	675	8	< RL	< RL	< RL	< RL	< RL	< RL	10
IE	71	6	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-N	1608	11	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-C	630	6	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-S	716	9	< RL	< RL	< RL	< RL	< RL	< RL	8
ІТ	2954	26	< RL	< RL	< RL	< RL	< RL	< RL	10
LT									
LU	79	2	< RL	< RL	< RL	< RL	< RL	< RL	1
LV MT									
NL	53	1	< RL	< RL	< RL	< RL	< RL	< RL	10
PL-N		1	SINE	- NL	SINE	SINL	- NL	SINE	10
PL-S									
PL									
PT									
RO-N	14787	19	< RL	< RL	< RL	< RL	< RL	< RL	9
RO-S	17303	18	< RL	< RL	< RL	< RL	< RL	< RL	9
RO	32090	37	< RL	< RL	< RL	< RL	< RL	< RL	9
SE-N									
SE-S									
SE									
SI									
SK									

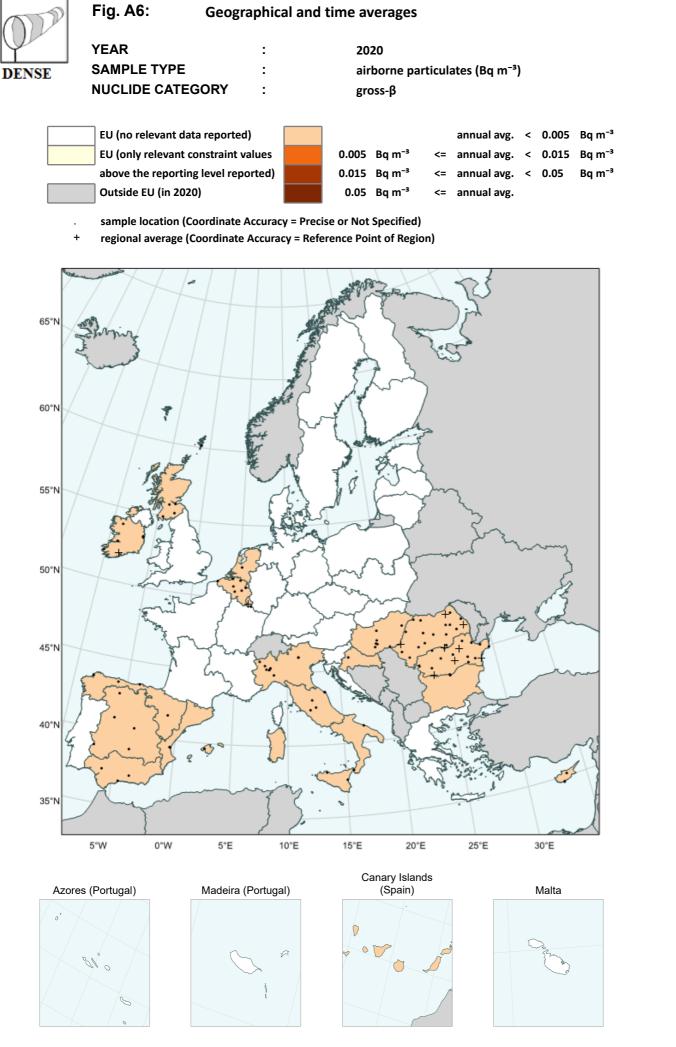
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.


Table A4: Geographical and time averages

YEAR : 2018 SAMPLE TYPE : airborne particulates (Bq m⁻³) NUCLIDE CATEGORY : gross-β

<table-container>verticalquartor</table-container>	Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				quarter	quarter	quarter	quarter	average			
BG 3 2 <rl< th=""> 11 CY 328 2 <rl< td=""> <rl< td=""> <rl< td=""> < RL < RL < RL 8 DE-N 2 2 2.9E-02 2.9E-01 1.6E-01 2.9E-01 12 DE-S 2 2.9E-02 2.9E-01 1.6E-01 2.9E-01 12 DE 2 2.9E-02 2.9E-01 1.6E-01 2.9E-01 12 DE 2 2.9E-02 RL A A DE 2.9E-01 12 2.9E-01<</rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>	AT										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						< RL				11	
CZ Image: Constraint of the sector of the sec											
DE-M 2 2 2.9E-02 2.9E-01 1.6E-01 2.9E-01 1.6E-01 2.9E-01 1.2 DE-S 2 2.9E-02 2.9E-01 1.6E-01 2.9E-01 1.2 DE 2 2 2.9E-02 2.9E-01 1.6E-01 2.9E-01 1.2 DE 2 2 2.9E-02 2.9E-01 1.6E-01 2.9E-01 1.2 DK		328	2	< RL	< RL	< RL	< RL	< RL	< RL	8	
DE-Cs DE-Ss DE-S L <thl< th=""> <thl< th=""> <thl< th=""> <</thl<></thl<></thl<>											
DE-E 2 2 2.9E-02 A A DE-E 2 2.9E-02 1.6E-01 2.9E-01 12 DK		2	2	2.9E-02			2.9E-01		2.9E-01	12	
DE-E 2 2 2.9E-0 1 2.9E-01 1.29E-01 1.29E-01 <th1.29e-01< th=""> 1.29E-01 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th1.29e-01<>											
DE222.9E-022.9E-011.8E-012.9E-011.2DKES2.084< RL											
DK DC DC DC DC DC DC DC EE 209 4 < RL <											
EE ···· ···· ···· ···· ···· ES-N 208 4 < RL < RL < RL < RL < RL 0 ES-C 259 6 < RL < <td>< RL</td> < RL	< RL		2	2	2.9E-02			2.9E-01	1.6E-01	2.9E-01	12
ES.N 208 4 <rl< th=""> SR SR</rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>											
ES-C 259 6 < RL		000				. 5/	. 5/	. 5/		- 10	
ESS 158 3 < RL					1						
ESE 158 3 < RL											
FS 783 16 < RL							1				
FH Image: second s							1				
FIS Image: Section of the section o		/83	10	< <i>K</i> L	≤ KL	≤ KL	< KL	≤ KL	≤ KL	9	
FI Control											
FR-NW FR-SW FR-SW <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>											
FR-NE FR-SE FR-SE FR See Image Image <th></th>											
FR-SW FR FR Image: Section of the sectin of the section of the sectio	1										
FR-SE FR Image											
FR Image: Section of the sectin the section of the sectin the sectin the sectin the se											
GB-EN GB-WL GB-WL GB-SC 45 4 < RL											
GB-WL GB-SC 45 4 < RL											
GB-SC GB-NI GB 45 4 < RL											
GB-NI GB 45 4 $<$ RL <t< th=""><th></th><th>45</th><th>4</th><th>< RI</th><th>< RI</th><th>< RI</th><th>< RI</th><th>< RI</th><th>< RI</th><th>11</th></t<>		45	4	< RI	< RI	< RI	< RI	< RI	< RI	11	
GB 45 4 <rl< th=""> <</rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>											
GR 2 1 < RL		45	4	< RL	< RL	< RL	< RL	< RL	< RL	11	
HR-A HR-C 12 1 < RL	GR	2	1	< RL				< RL	< RL	1	
HR 12 1 <rl< th=""> <rl< <="" th=""><th>HR-A</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>	HR-A										
HU 562 10 $< RL$	HR-C	12	1	< RL	< RL	< RL	< RL	< RL	8.4E-03	10	
IE 72 5 $< RL$	HR	12	1	< RL	< RL	< RL	< RL	< RL	8.4E-03	10	
IT-N 1325 7 $< RL$ <th< th=""><th>HU</th><th>562</th><th>10</th><th>< RL</th><th>< RL</th><th>< RL</th><th>< RL</th><th>< RL</th><th>< RL</th><th>8</th></th<>	HU	562	10	< RL	< RL	< RL	< RL	< RL	< RL	8	
IT-C IT-S IT-S 2340 444 4 571 33 2340 $< RL$ $< RL$ 	IE	72	5	< RL	< RL	< RL	< RL	< RL	< RL	6	
IT-S 571 3 < RL	IT-N	1325	7	< RL	< RL	< RL	< RL	< RL	< RL	12	
IT 2340 14 < RL	IT-C	444	4	< RL	< RL	< RL	< RL	< RL	< RL	8	
LT Image: marking the series of the	IT-S	571	3	< RL	< RL		< RL	< RL	< RL	8	
LU782 <rl< th=""><rl< th=""><rl< th=""><rl< th=""><rl< th=""><rl< th="">5LVIIIIIIIIIIIIMT521<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">11PL-N521<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">11PL-NIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>		2340	14	< RL	< RL	< RL	< RL	< RL	< RL	8	
LVImage: constraint of the symbol											
MTImage: Series ser		78	2	< RL	< RL	< RL	< RL	< RL	< RL	5	
NL521< RL											
PL-N PL-S PLImage: Section of the											
PL-S PLImage: Second s		52	1	< RL	< RL	< RL	< RL	< RL	< RL	11	
PL Image: Sector of the sector o											
PT Image: Second s											
RO-N 3175 18 < RL											
RO-S RO 6627 18 < RL											
RO 9802 36 < RL											
SE-N SE-S SE											
SE-S SE Image: Sector of the		9802	36	< RL	< RL	< RL	< RL	< RL	< RL	11	
SE Image: SI Image: SI Image: SI Image: SI											
SI I I I I I I I I I I I I I I I I I I											
SK											
	SK										

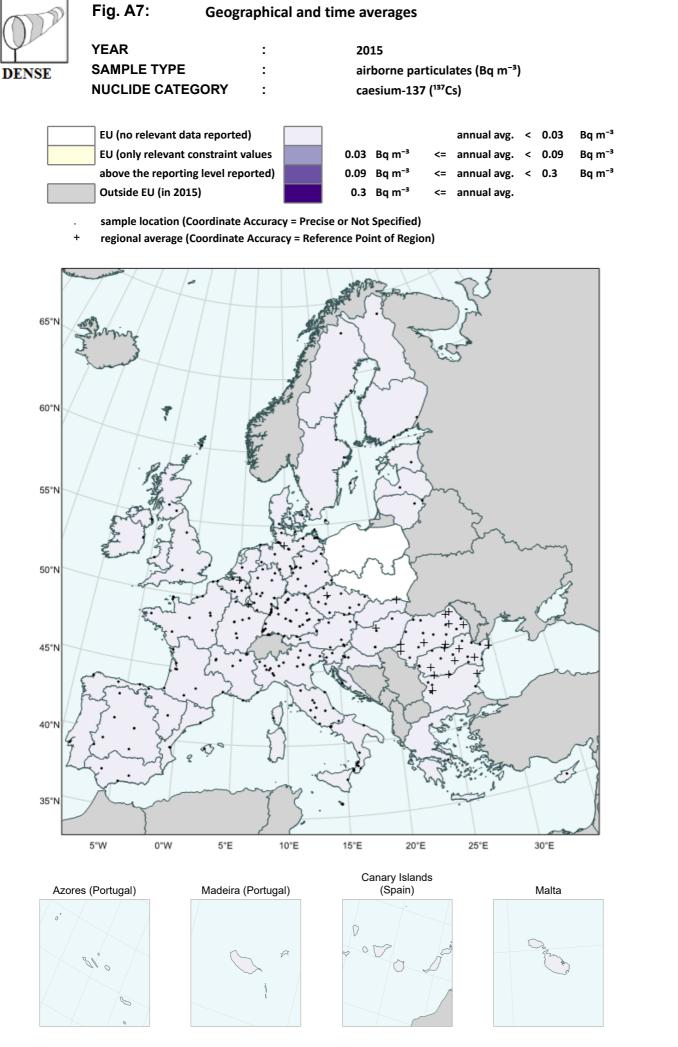
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.


Table A5: Geographical and time averages

YEAR	:	2019
SAMPLE TYPE	:	airborne particulates (Bq m⁻³)
NUCLIDE CATEGORY	:	gross-β

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT									
BE	2136	7	< RL	4					
BG	0.11		. 5/		. 5/	. 5/		. 5/	
CY C7	211	2	< RL	11					
CZ DE-N	2	2				1.5E-01	1.5E-01	3.0E-01	12
DE-N DE-C	4	2				4.2E-02	4.2E-02	4.2E-02	12
DE-S		2				4.22-02	Δ	4.22-02	12
DE-E							Δ		
DE	6	4				6.7E-02	6.7E-02	1.3E-01	12
DK									
EE									
ES-N	215	4	< RL	9					
ES-C	255	6	< RL	7					
ES-S	155	3	< RL	9					
ES-E	159	3	< RL	7					
ES	784	16	< RL	7					
FI-N									
FI-S									
FI FR-NW									
FR-NW FR-NE									
FR-NE									
FR-SE									
FR									
GB-EN									
GB-WL									
GB-SC									
GB-NI									
GB									
GR									
HR-A									
HR-C	12	1	< RL	8					
HR	12	1	< RL	8					
HU	669	8	< RL	10					
IE	68	6	< RL	1					
IT-N IT-C	2008 508	10	< RL < RL	8					
IT-C	781	6 6	< RL < RL	6 8					
IT-S	3297	22	< RL < RL	< RL	< RL < RL	< RL	< RL < RL	< RL < RL	о 8
LT	5257		- 116	- 116	- 116	- 116	- 116	- 112	0
LU	76	2	< RL	8					
LV		-							-
MT						i			
NL	53	1	< RL	2					
PL-N									
PL-S									
PL									
PT									
RO-N	14542	18	< RL	11					
RO-S	17251	18	< RL	5					
RO	31793	36	< RL	5					
SE-N									
SE-S SE									
SI									
SK									
JI						1			

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.


Table A6: Geographical and time averages

\mathcal{P}
DENSE

YEAR	:	2020
SAMPLE TYPE	:	airborne particulates (Bq m⁻³)
NUCLIDE CATEGORY	:	gross-β

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT									
BE	4152	7	< RL	< RL	< RL	< RL	< RL	7.0E-03	6
BG	2	1	< RL	< RL		< RL	< RL	< RL	11
CY	303	2	< RL	< RL	< RL	< RL	< RL	< RL	9
CZ DE-N	<u> </u>								
DE-N DE-C									
DE-S									
DE-E									
DE									
DK									
EE									
ES-N	205	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-C	249	5	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-S	137	3	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-E	160	3	< RL	< RL	< RL	< RL	< RL	< RL	7
ES	751	15	< RL	< RL	< RL	< RL	< RL	< RL	9
FI-N									
FI-S									
FI									
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN GB-WL									
GB-WL GB-SC	12	5	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-SC GB-NI	43	5	< RL	< RL	< RL			< RL	4
GB	43	5	< RL	< RL	< RL	< RL	< RL	< RL	4
GR	40	0	-772	-772	-772	- TIL	- 112	- TIL	
HR-A									
HR-C	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
HR	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
HU	567	7	< RL	< RL	< RL	< RL	< RL	< RL	9
IE	69	6	< RL	< RL	< RL	< RL	< RL	< RL	4
IT-N	1924	8	< RL	< RL	< RL	< RL	< RL	< RL	11
IT-C	509	5	< RL	< RL	< RL	< RL	< RL	< RL	8
IT-S	660	4	< RL	< RL	< RL	< RL	< RL	< RL	8
ІТ	3093	17	< RL	< RL	< RL	< RL	< RL	< RL	11
LT									
LU	77	2	< RL	< RL	< RL	< RL	< RL	< RL	9
LV									
MT			. 51		. 51	. 51	. 51	. 51	
NL	53	1	< RL	< RL	< RL	< RL	< RL	< RL	11
PL-N									
PL-S PL									
PL PT									
RO-N	16011	19	< RL	< RL	< RL	< RL	< RL	< RL	9
RO-N RO-S	17208	19 18	< RL < RL	< RL	< RL	< RL < RL	< RL	< RL < RL	8
RO-S	33219	37	< RL < RL	< RL	< RL < RL	< RL < RL	< RL	< RL < RL	8
SE-N	00213	57	- 112	- 112	- 112	- 116	- 116	- NL	5
SE-S									
SE									
SI									
SK									
511						1			

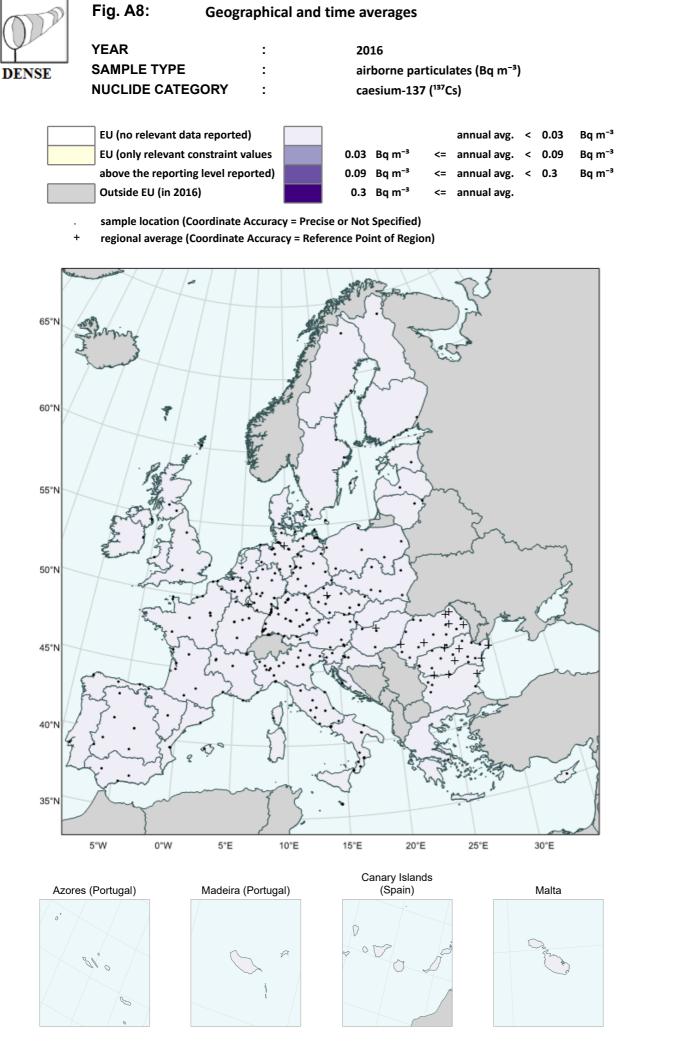
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table A7: Geographical and time averages

:

:

:


YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	м
			quarter	quarter	quarter	quarter	average	max	
AT	568	10	< RL	12					
BE	82	7	< RL	5					
BG	147	8	< RL	1					
CY	30	1	< RL	9					
CZ	533	11	< RL	10					
DE-N	3964	22	< RL	10					
DE-C	3873	15	< RL	12					
DE-S	4553	33	< RL	12					
DE-E	3293	11	< RL	8					
DE	15683	81	< RL	12					
DK	74	3	< RL	10					
EE	154	3	< RL	1					
ES-N	106	5	< RL	8					
ES-C	174	7	< RL	1					
ES-S	132	4	< RL	2					
ES-E	92	4	< RL	3					
ES	504	20	< RL	8					
FI-N	28	1		< RL	9				
FI-S	408	4	< RL	10					
FI	436	5	< RL	10					
FR-NW	694	13	< RL	5					
FR-NE	278	7	< RL	3					
FR-SW	364	9	< RL	11					
FR-SE	407	8	< RL	11					
FR	1743	37	< RL	3					
GB-EN	15	3	< RL	2					
GB-WL	5	1	< RL	8					
GB-SC	33	3	< RL	1					
GB-NI	5	1	< RL	2					
GB	58	8	< RL	2					
GR	18	1		< RL		< RL	< RL	< RL	6
HR-A	4	1	< RL	11					
HR-C	15	1	< RL	5					
HR	19	2	< RL	5					
HU	167	5	< RL	1					
IE	11	1	< RL	4					
IT-N	955	16	< RL	12					
IT-C	1014	11	< RL	1					
IT-S	208	13	< RL	6					
IT	2177	40	< <i>RL</i>	< RL	7				
LT	24	2	< RL	8					
LU	104	2	< RL	2					
LV	5	1	< RL	6					
MT	28	2	< <i>RL</i>	< RL	11				
NL	53	1	< RL	10					
PL-N									
PL-S									
PL									
PT	50	1	< RL	3					
RO-N	228	19	< RL	7					
RO-S	214	18	< RL	10					
RO	442	37	< <i>RL</i>	< RL	8				
SE-N	106	2	< RL	6					
SE-S	212	4	< RL	10					
SE SE	318	6	< RL	6					
SI	63	5	< RL	12					
SK	19	2	< RL < RL	8					
J	19	2	> KL					> KL	0

RL: reporting level for ¹³⁷Cs In air, i.e. 3.0 E-02 BQ/M3 (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

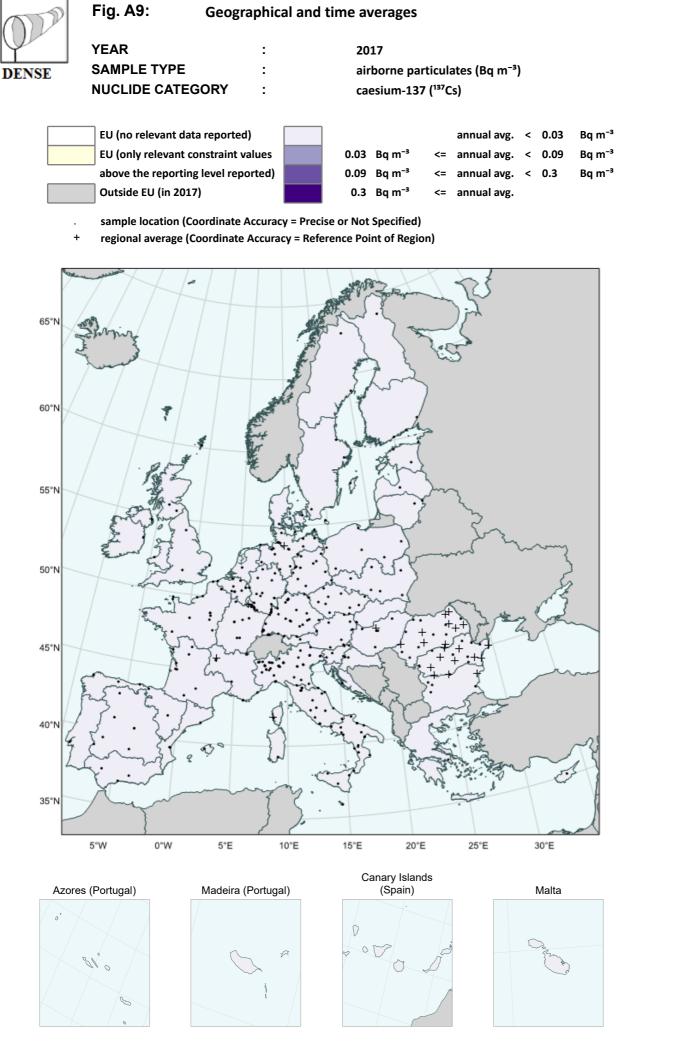
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table A8: Geographical and time averages

:

:

:


YEAR SAMPLE TYPE NUCLIDE CATEGORY

2016 airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
		ĺ	quarter	quarter	quarter	quarter	average	max	
AT	579	10	< <i>RL</i>	< RL	12				
BE	93	7	< RL	< RL	< RL	< RL	< RL	< RL	3
BG	125	6	< RL	< RL	< RL	< RL	< RL	< RL	12
CY	12	1	< RL	< RL	< RL	< RL	< RL	< RL	10
CZ	504	13	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	4117	24	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-C	3923	15	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-S	4803	33	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-E	3381	10	< RL	< RL	< RL	< RL	< RL	< RL	4
DE	16224	82	< RL	< RL	< RL	< RL	< RL	< RL	12
DK	75	3	< RL	< RL	< RL	< RL	< RL	< RL	12
EE	154	3	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-N	83	5	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-C	171	7	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-S	131	4	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-E	92	4	< RL	< RL	< RL	< RL	< RL	< RL	2
ES	477	20	< RL	< RL	< RL	< RL	< RL	< RL	2
FI-N	54	1	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-S	206	3	< RL	< RL	< RL	< RL	< RL	< RL	3
FI	260	4	< RL	< RL	< RL	< RL	< RL	< RL	3
FR-NW	613	13	< RL	< RL	< RL	< RL	< RL	< RL	1
FR-NE	261	6	< RL	< RL	< RL	< RL	< RL	< RL	8
FR-SW	250	8	< RL	< RL	< RL	< RL	< RL	< RL	1
FR-SE	323	8	< RL	< RL	< RL	< RL	< RL	< RL	8
FR	1447	35	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-EN	3	3	< RL				< RL	< RL	1
GB-WL	1	1	< RL				< RL	< RL	1
GB-SC	36	3	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI	1	1	< RL				< RL	< RL	1
GB	41	8	< RL	< RL	< RL	< RL	< RL	< RL	2
GR	43	1	< RL	< RL	< RL	< RL	< RL	< RL	4
HR-A	6	1	< RL	< RL	< RL	< RL	< RL	< RL	11
HR-C	15	1	< RL	< RL	< RL	< RL	< RL	< RL	1
HR	21	2	< RL	< RL	< RL	< RL	< RL	< RL	12
HU	191	4	< RL	< RL	< RL	< RL	< RL	< RL	3
IE	13	1	< RL	< RL	< RL	< RL	< RL	< RL	3
IT-N	954	18	< RL	< RL	< RL	< RL	< RL	< RL	3
IT-C	860	10	< RL	< RL	< RL	< RL	< RL	< RL	2
IT-S	259	12	< RL	< RL	< RL	< RL	< RL	< RL	10
п	2073	40	< RL	< RL	< RL	< RL	< RL	< RL	2
LT	23	2	< RL	< RL	< RL	< RL	< RL	< RL	11
LU	100	2	< RL	< RL	< RL	< RL	< RL	< RL	9
LV	3	1	< RL		< RL	< RL	< RL	< RL	12
МТ	24	2	< RL	< RL	< RL	< RL	< RL	< RL	11
NL	53	1	< RL	< RL	< RL	< RL	< RL	< RL	5
PL-N	6	6				< RL	< RL	< RL	12
PL-S	6	6				< RL	< RL	< RL	12
PL	12	12				< RL	< RL	< RL	12
PT	50	1	< RL	< RL	< RL	< RL	< RL	< RL	6
RO-N	216	18	< RL	< RL	< RL	< RL	< RL	< RL	7
RO-S	212	18	< RL	< RL	< RL	< RL	< RL	< RL	6
RO	428	36	< RL	< RL	< RL	< RL	< RL	< RL	6
SE-N	106	2	< RL	< RL	< RL	< RL	< RL	< RL	6
SE-S	212	4	< RL	< RL	< RL	< RL	< RL	< RL	5
SE	318	6	< RL	< RL	< RL	< RL	< RL	< RL	6
SI	62	5	< RL	< RL	< RL	< RL	< RL	< RL	12
SK	13	2	< RL	< RL	< RL	< RL	< RL	< RL	11

RL: reporting level for ^{137}Cs In air, i.e. 3.0 E-02 BQ/M3 (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

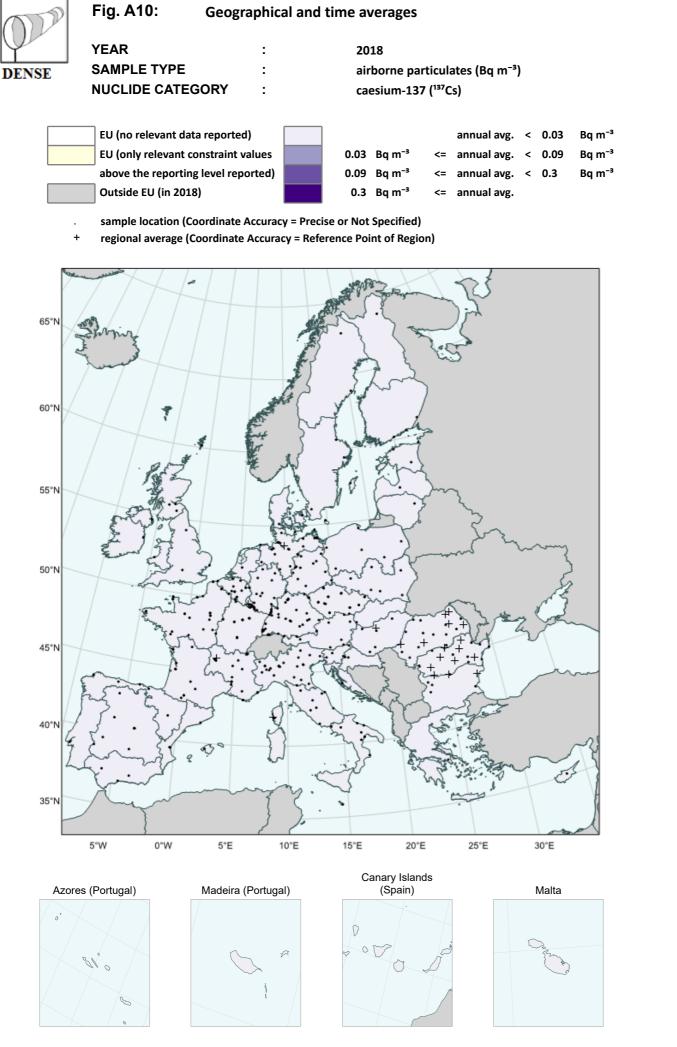
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table A9: Geographical and time averages

:

:

:


YEAR SAMPLE TYPE NUCLIDE CATEGORY

2017 airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	м
		Í	quarter	quarter	quarter	quarter	average	max	
AT	590	10	< RL	< RL	< RL	< RL	< RL	< RL	10
BE	106	10	< RL	< RL	< RL	< RL	< RL	< RL	12
BG	126	6	< RL	< RL	< RL	< RL	< RL	< RL	8
CY	18	1	< RL	< RL	< RL	< RL	< RL	< RL	9
CZ	549	10	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-N	3879	21	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-C	3784	21	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-S	4595	32	< RL	< RL	< RL	< RL	< RL	< RL	3
DE-E	3199	11	< RL	< RL	< RL	< RL	< RL	< RL	3
DE	15457	85	< RL	< RL	< RL	< RL	< RL	< RL	9
DK	77	3	< RL	< RL	< RL	< RL	< RL	< RL	1
EE	154	3	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-N	104	5	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-C	170	7	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-S	130	4	< <i>RL</i>	< RL	11				
ES-E	91	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES	495	20	< RL	< RL	< RL	< RL	< RL	< RL	9
FI-N	52	1	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-S	152	3	< RL	< RL	< RL	< RL	< RL	< RL	6
FI	204	4	< RL	< RL	< RL	< RL	< RL	< RL	6
FR-NW	601	14	< RL	< RL	< RL	< RL	< RL	< RL	4
FR-NE	257	7	< RL	< RL	< RL	< RL	< RL	< RL	12
FR-SW	262	10	< RL	< RL	< RL	< RL	< RL	< RL	2
FR-SE	288	11	< RL	< RL	< RL	< RL	< RL	< RL	2
FR	1408	42	< RL	< RL	< RL	< RL	< RL	< RL	2
GB-EN	12	3	< RL	< RL	< RL	< RL	< RL	< RL	8
GB-WL	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-SC	36	3	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI	4	1	< RL	< RL	< RL	< RL	< RL	< RL	11
GB	56	8	< RL	< RL	< RL	< RL	< RL	< RL	8
GR	41	1	< RL	< RL	< RL	< RL	< RL	< RL	8
HR-A	4	1	< RL	< RL	< RL	< RL	< RL	< RL	11
HR-C	18	1	< RL	< RL	< RL	< RL	< RL	< RL	10
HR	22	2	< RL	< RL	< RL	< RL	< RL	< RL	10
HU	165	7	< RL	< RL	< RL	< RL	< RL	< RL	10
IE	59	1	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-N	1120	40	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-C	903	18	< RL	< RL	< RL	< RL	< RL	< RL	3
IT-S	90	22	< RL	< RL	< RL	< RL	< RL	< RL	10
ІТ	2113	80	< RL	< RL	< RL	< RL	< RL	< RL	10
LT	24	2	< RL	< RL	< RL	< RL	< RL	< RL	2
LU	96	2	< RL	< RL	< RL	< RL	< RL	< RL	2
LV	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
МТ	60	1	< RL	< RL	< RL	< RL	< RL	< RL	1
NL	53	1	< RL	< RL	< RL	< RL	< RL	< RL	2
PL-N	12	6	< RL	< RL	< RL	< RL	< RL	< RL	12
PL-S	12	6	< RL	< RL	< RL	< RL	< RL	< RL	1
PL	24	12	< RL	< RL	< RL	< RL	< RL	< RL	12
PT	50	1	< RL	< RL	< RL	< RL	< RL	< RL	10
RO-N	220	19	< RL	< RL	< RL	< RL	< RL	< RL	9
RO-S	216	18	< RL	< RL	< RL	< RL	< RL	< RL	11
RO	436	37	< RL	< RL	< RL	< RL	< RL	< RL	9
SE-N	105	2	< RL	< RL	< RL	< RL	< RL	< RL	9
SE-S	211	4	< RL	< RL	< RL	< RL	< RL	< RL	6
SE	316	6	< RL	< RL	< RL	< RL	< RL	< RL	9
SI	70	6	< RL	< RL	< RL	< RL	< RL	< RL	12
SK	25	2	< RL	< RL	< RL	< RL	< RL	< RL	2

RL: reporting level for ¹³⁷Cs In air, i.e. 3.0 E-02 BQ/M3 (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

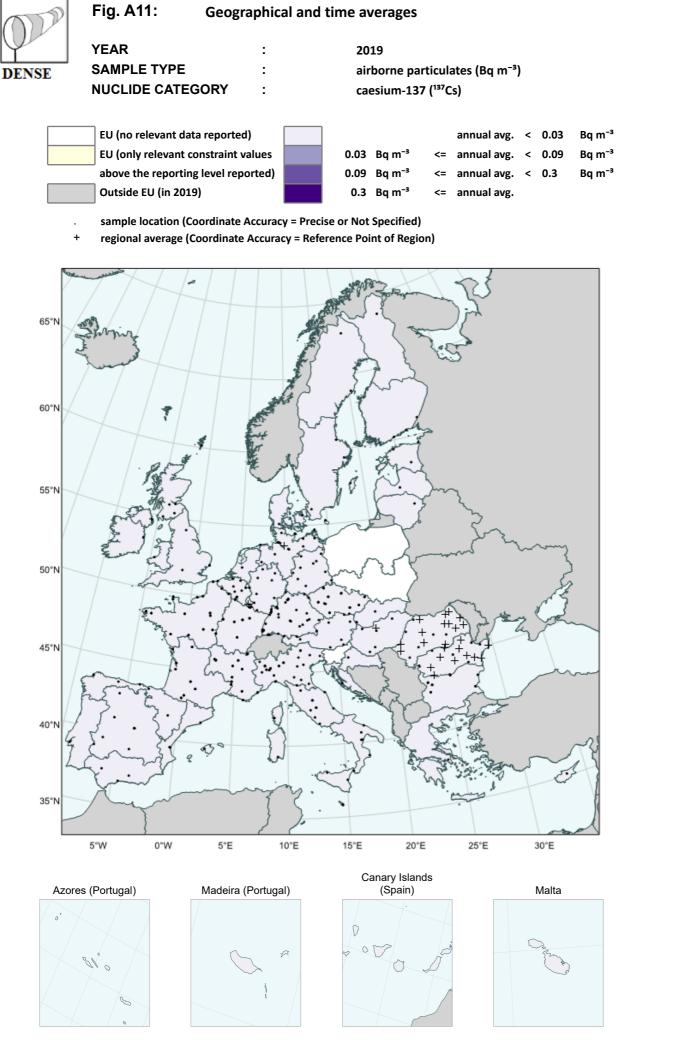
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table A10: Geographical and time averages

:

:

:



YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
	ĺ	ĺ	quarter	quarter	quarter	quarter	average	max	
AT	579	10	< RL	< RL	< RL	< RL	< RL	< RL	12
BE	100	10	< RL	< RL	< RL	< RL	< RL	< RL	8
BG	143	6	< RL	< RL	< RL	< RL	< RL	< RL	11
СҮ	39	1	< RL	< RL	< RL	< RL	< RL	< RL	8
CZ	540	20	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-N	3916	25	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-C	3804	20	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-S	4685	35	< RL	< RL	< RL	< RL	< RL	< RL	5
DE-E	3105	11	< RL	< RL	< RL	< RL	< RL	< RL	11
DE	15510	91	< RL	< RL	< RL	< RL	< RL	< RL	8
DK	71	4	< RL	< RL	< RL	< RL	< RL	< RL	3
EE	154	3	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-N	97	5	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-C	170	9	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-S	134	4	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-E	91	4	< RL	< RL	< RL	< RL	< RL	< RL	2
ES	492	22	< RL	< RL	< RL	< RL	< RL	< RL	5
FI-N	53	1	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-S	149	4	< RL	< RL	< RL	< RL	< RL	< RL	5
FI	202	5	< RL	< RL	< RL	< RL	< RL	< RL	5
FR-NW	448	25	< RL	< RL	< RL	< RL	< RL	< RL	12
FR-NE	273	16	< RL	< RL	< RL	< RL	< RL	< RL	12
FR-SW	218	12	< RL	< RL	< RL	< RL	< RL	< RL	10
FR-SE	334	21	< RL	< RL	< RL	< RL	< RL	< RL	12
FR	1273	74	< RL	< RL	< RL	< RL	< RL	< RL	12
GB-EN	15	3	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-WL	5	1	< RL	< RL	< RL	< RL	< RL	< RL	8
GB-SC	45	4	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI	5	1	< RL	< RL	< RL	< RL	< RL	< RL	1
GB	70	9	< RL	< RL	< RL	< RL	< RL	< RL	5
GR	30	1	< RL	< RL	< RL	< RL	< RL	< RL	5
HR-A	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
HR-C	14	1	< RL	< RL	< RL	< RL	< RL	< RL	2
HR	18	2	< RL	< RL	< RL	< RL	< RL	< RL	2
HU	273	6	< RL	< RL	< RL	< RL	< RL	< RL	12
IE	49	1	< RL	< RL	< RL	< RL	< RL	< RL	7
IT-N	1034	23	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-C	535	8	< RL	< RL	< RL	< RL	< RL	< RL	8
IT-S	63	9	< <i>RL</i>	< RL	5				
ΙТ	1632	40	< <i>RL</i>	< RL	1				
LT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	10
LU	106	2	< RL	< RL	< RL	< RL	< RL	< RL	11
LV	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
МТ	35	1	< RL	< RL	< RL	< RL	< RL	< RL	10
NL	52	1	< <i>RL</i>	< RL	3				
PL-N	6	6	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	6	6	< RL	< RL	< RL	< RL	< RL	< RL	1
PL	12	12	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	51	1	< RL	< RL	< RL	< RL	< RL	< RL	9
RO-N	228	19	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-S	216	18	< <i>RL</i>	< RL	6				
RO	444	37	< RL	< RL	< RL	< RL	< RL	< RL	7
SE-N	108	2	< RL	< RL	< RL	< RL	< RL	< RL	5
SE-S	214	4	< RL	< RL	< RL	< RL	< RL	< RL	5
SE	322	6	< <i>RL</i>	< RL	5				
SI	57	5	< RL	< RL	< RL	< RL	< RL	< RL	5
SK	26	1	< RL	< RL	< RL	< RL	< RL	< RL	2
UN	20	'	> INL			- NL		- NL	2

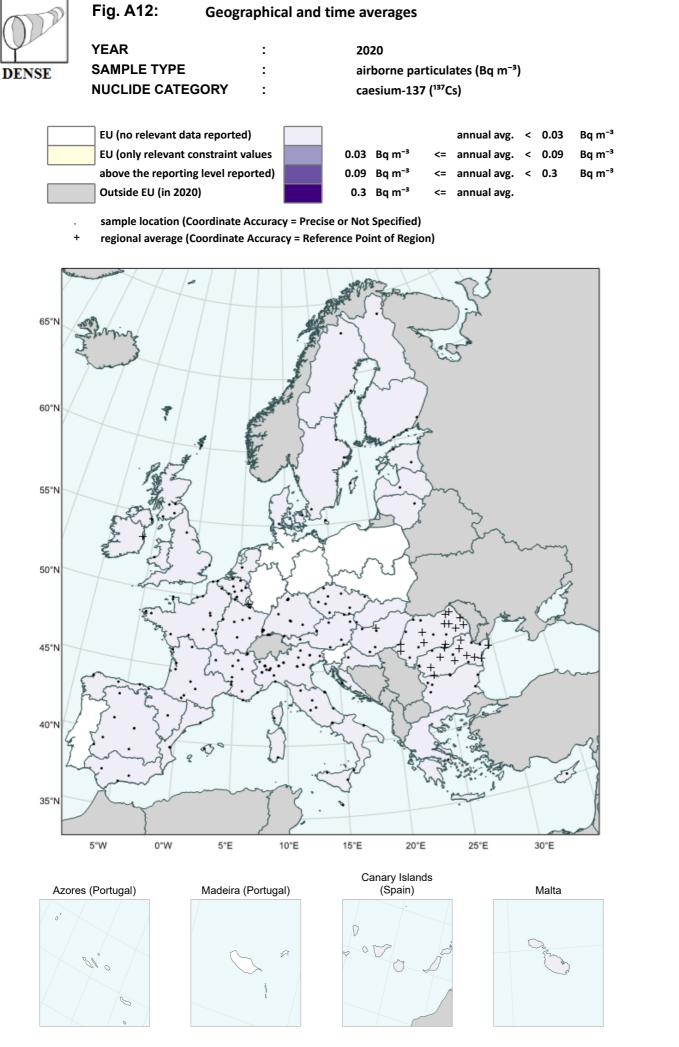
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table A11: Geographical and time averages

:

:

:


YEAR SAMPLE TYPE NUCLIDE CATEGORY

2019 airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
	İ	İ	quarter	quarter	quarter	quarter	average	max	ĺ
AT	573	10	< RL	< RL	< RL	< RL	< RL	< RL	12
BE	100	7	< RL	< RL	< RL	< RL	< RL	< RL	5
BG	122	10	< RL	< RL	< RL	< RL	< RL	< RL	4
СҮ	40	1	< RL	< RL	< RL	< RL	< RL	< RL	2
CZ	525	19	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-N	3616	15	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-C	3487	12	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-S	4562	33	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-E	3143	10	< RL	< RL	< RL	< RL	< RL	< RL	11
DE	14808	70	< RL	< RL	< RL	< RL	< RL	< RL	7
DK	67	4	< RL	< RL	< RL	< RL	< RL	< RL	4
EE	157	3	< RL	< RL	< RL	< RL	< RL	< RL	4
ES-N	106	5	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-C	170	9	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-S	129	4	< RL	< RL	< RL	< RL	< RL	< RL	11
ES-E	81	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES	486	22	< RL	< RL	< RL	< RL	< RL	< RL	11
FI-N	59	1	< RL	< RL	< RL	< RL	< RL	< RL	4
FI-S	331	3	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	8
FI	390	4	< RL	< RL	< RL	< RL	< RL	< RL	8
FR-NW	780	32	< RL	< RL	< RL	< RL	< RL	< RL	4
FR-NE	501	21	< RL	< RL	< RL	< RL	< RL	< RL	11
FR-SW	447	18	< RL	< RL	< RL	< RL	< RL	< RL	9
FR-SE	541	25	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	11
FR	2269	96	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	11
GB-EN	4	4	< RL			< RL	< RL	< RL	12
GB-WL	1	1	< RL				< RL	< RL	1
GB-SC	54	5	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI	1	1	< RL				< RL	< RL	1
GB	60	11	< RL	< RL	< RL	< RL	< RL	< RL	2
GR	17	1	< RL	< RL	< RL	< RL	< RL	< RL	3
HR-A	4	1	< RL	< RL	< RL	< RL	< RL	< RL	11
HR-C	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
HR	16	2	< RL	< RL	< RL	< RL	< RL	< RL	11
ни	266	6	< RL	< RL	< RL	< RL	< RL	< RL	1
IE	50	1	< RL	< RL	< RL	< RL	< RL	< RL	2
IT-N	1126	29	< RL	< RL	< RL	< RL	< RL	< RL	7
IT-C	606	10	< RL	< RL	< RL	< RL	< RL	< RL	9
IT-S	382	9	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	4
п	2114	48	< RL	< RL	< RL	< RL	< RL	< RL	7
LT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	4
LU	105	2	< RL	< RL	< RL	< RL	< RL	< RL	11
LV	24	1	< RL	< RL	< RL	< RL	< RL	< RL	1
MT	43	2	< RL	< RL	< RL	< RL	< RL	< RL	7
NL	53	1	< RL	< RL	< RL	< RL	< RL	< RL	4
PL-N									
PL-S									
PL									
PT	47	1	< RL	< RL	< RL	< RL	< RL	< RL	6
RO-N	228	19	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-S	216	18	< RL	< RL	< RL	< RL	< RL	< RL	2
RO	444	37	< <i>RL</i>	< RL	< RL	< RL	< RL	< <i>RL</i>	2
SE-N	106	2	< RL	< RL	< RL	< RL	< RL	< RL	6
SE-S	222	4	< <i>RL</i>	< RL	< RL	< RL	< RL	< <i>RL</i>	4
SE	328	6	< <i>RL</i>	< RL	< RL	< RL	< RL	< <i>RL</i>	4
SI		-							
SK	65	3	< RL	< RL	< RL	< RL	< RL	< RL	5
5		5	- 116	-112	-112	-112		- 112	

RL: reporting level for ¹³⁷Cs In air, i.e. 3.0 E-02 BQ/M3 (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table A12: Geographical and time averages

YEAR SAMPLE TYPE NUCLIDE CATEGORY

: : : 2020 airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	576	10	< RL	1					
BE	185	7	< RL	12					
BG	120	6	< RL	4					
СҮ	41	1	< RL	4					
CZ	424	8	< RL	4					
DE-N									
DE-C									
DE-S	20	13	< RL				< RL	< RL	1
DE-E									
DE	20	13	< RL				< RL	< RL	1
DK	76	3	< RL	12					
EE	155	3	< RL	6					
ES-N	95	5	< RL	11					
ES-C	165	7	< RL	2					
ES-S	127	4	< RL	5					
ES-E	83	4	< RL	5					
ES	470	20	< RL	5					
FI-N	26	1	< RL	< RL			< RL	< RL	1
FI-S	452	4	< RL	6					
FI	478	5	< RL	9					
FR-NW	654	15	< RL	9					
FR-NE	410	10	< RL	9					
FR-SW	379	9	< RL	11					
FR-SE	436	11	< RL	9					
FR	1879	45	< RL	9					
GB-EN	8	2	< RL	10					
GB-WL	4	1	< RL	7					
GB-SC	43	5	< RL	1					
GB-NI	4	1	< RL	11					
GB	59	9	< RL	12					
GR	32	1	< RL	9					
HR-A	5	1	< RL	2					
HR-C	14	1	< RL	4					
HR	19	2	< RL	1					
HU	240	5	< RL	12					
IE	51	2	< RL	12					
IT-N	1335	26	< RL	5					
IT-C	665	11	< RL	9					
IT-S IT	380	6	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	10 5
	2380	43							
	12	1	< RL	10					
LU LV	106 12	2	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	3
MT	25	1	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	10 4
NL	53	1	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	4
NL PL-N		1	> KL	~ KL	> KL	> KL	> KL	~ KL	4
PL-N PL-S									
PL-5 PL									
PL									
RO-N	231	19	< RL	11					
RO-N RO-S	237	19 18	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	7
RO-S			< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	
	453	37 2	< RL < RL	< RL < RL	1			< RL < RL	7
SE-N	106	2			< RL	< RL	< RL		6
SE-S SE	221	4	< RL < RL	< RL < RL	< RL < RL	< RL	< RL < RL	< RL < RL	6 6
	327	0	> KL	> KL	> KL	< RL	~ KL	> KL	0
SI		- 1	< PI						
SK	22	1	< RL	6					

RL: reporting level for ^{137}Cs In air, i.e. 3.0 E-02 BQ/M3 (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

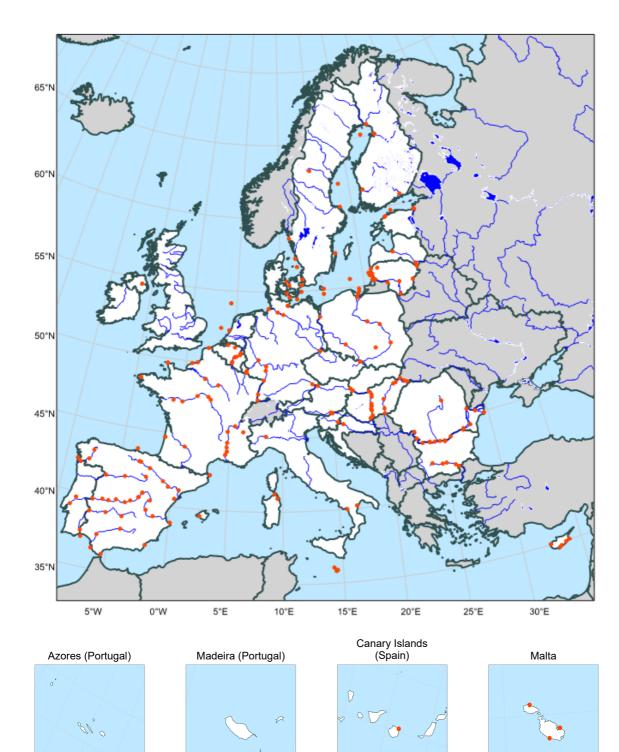
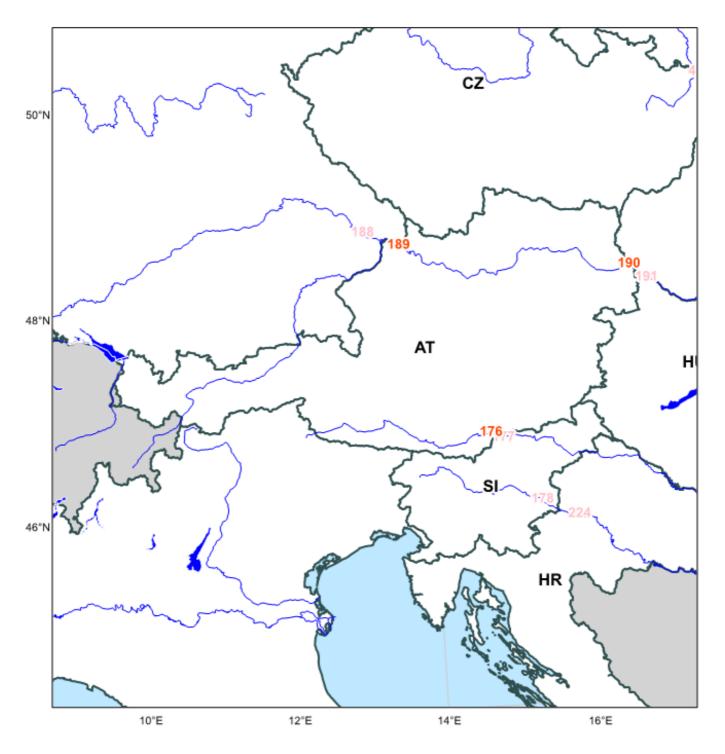
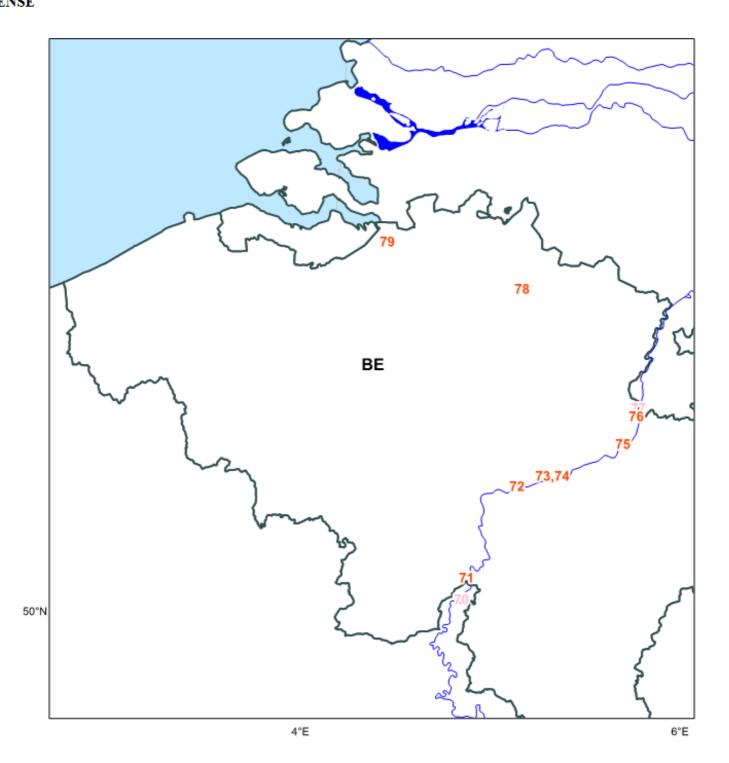
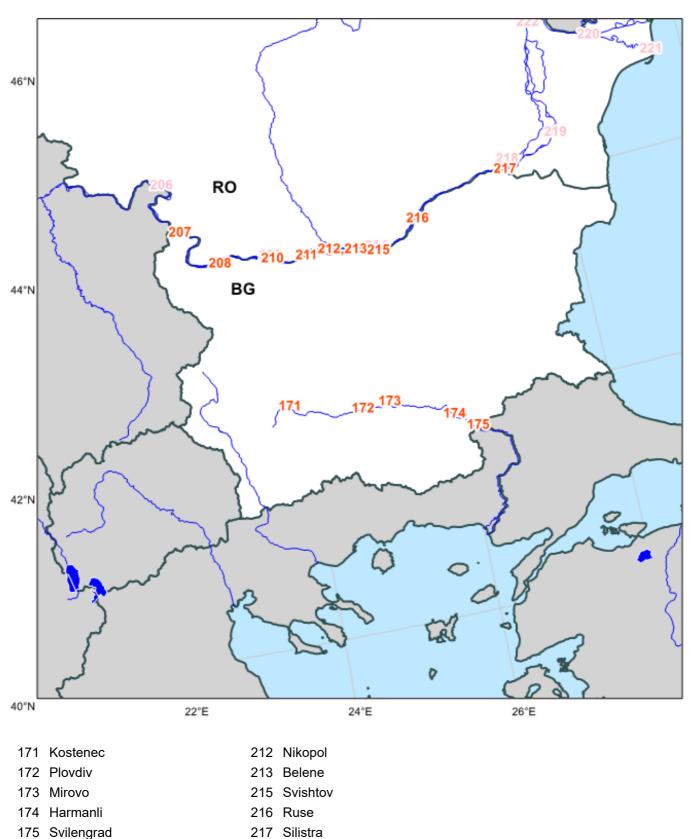



Fig. S2 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Austria



- 176 Schwabegg
- 189 Jochenstein
- 190 Wolfsthal


Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Belgium

- 71 Heer-Agimont
- 72 Andenne
- 73 Huy
- 74 Ampsin
- 75 Monsin
- 76 Lixhe
- 78 Geel
- 79 Doel

Fig. S4 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Bulgaria


DENSE

- 207 Novo Selo
- 208 Ruse
- 210 Oriahovo
- 211 Baykal

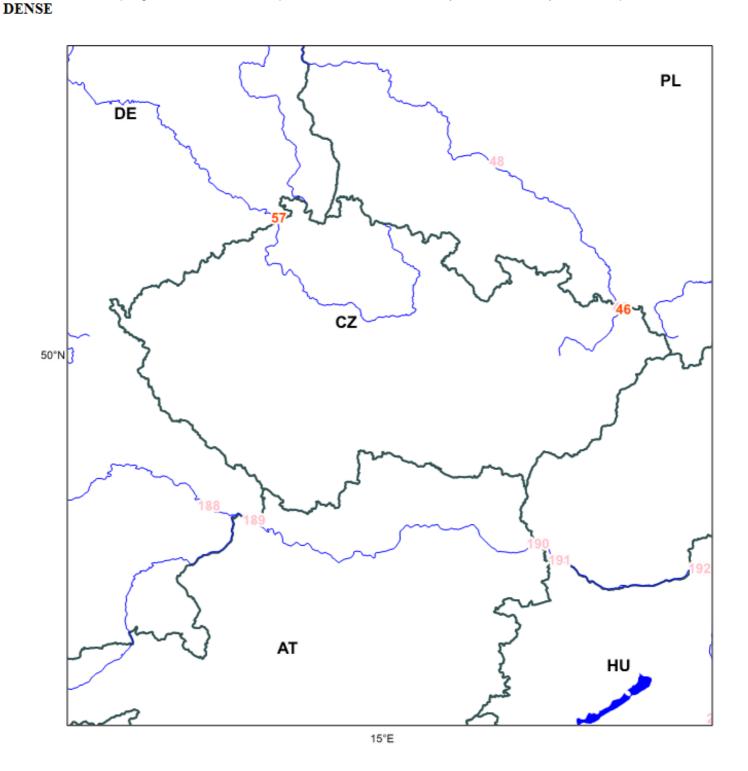

Fig. S5 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Croatia

15°E

224 Zagreb

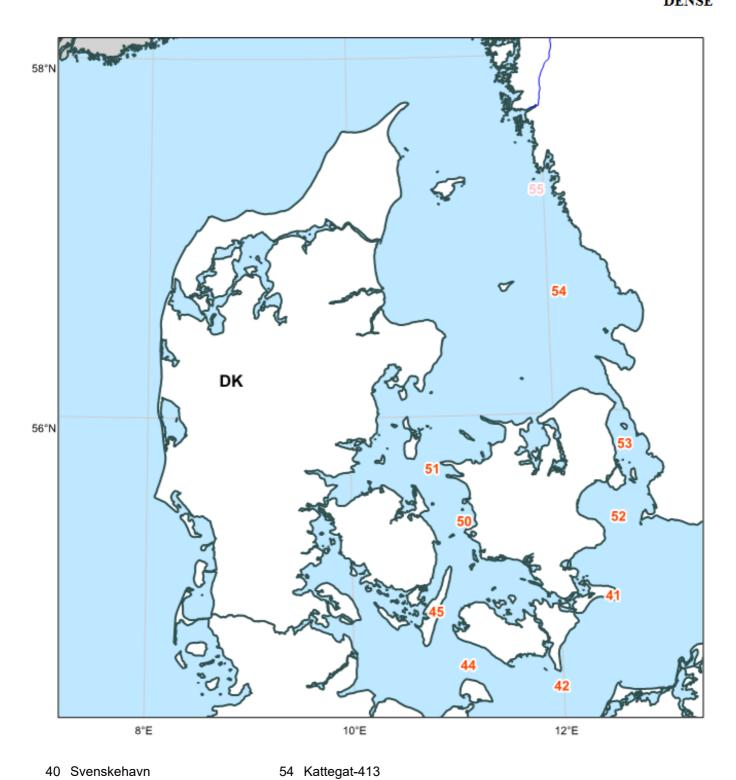
166 Polis

167 Limassol


168 Vasilikos

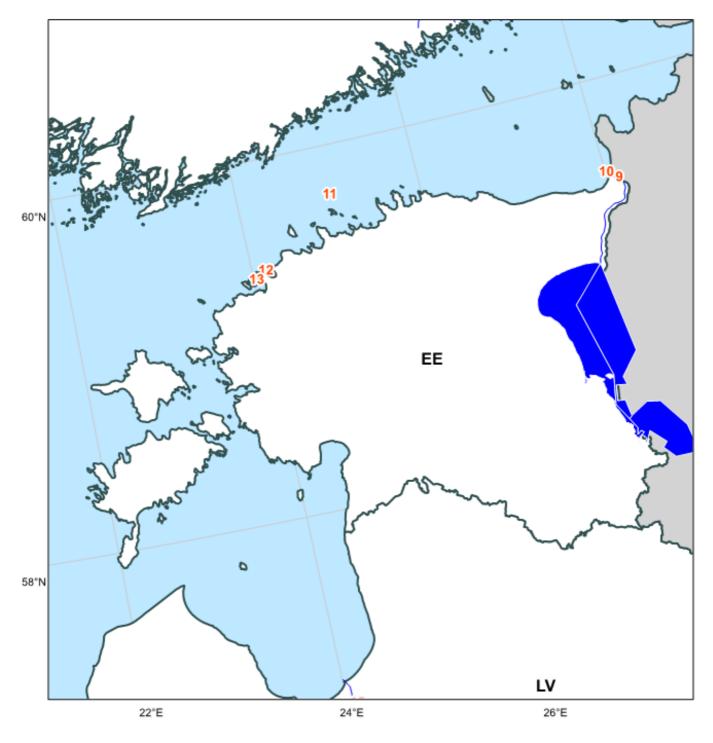
169 Larnaca

170 Paralimni


Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Czech Republic

46 Bohumin

57 Hrensko



- 40 Svenskehavn
- 41 Moen
- 42 Gedser Odde
- 44 Femern Baelt
- 45 Langeland Baelt
- 50 Halskov Rev
- 51 Asnaes Rev
- 52 The Sound S
- 53 The Sound N(A)

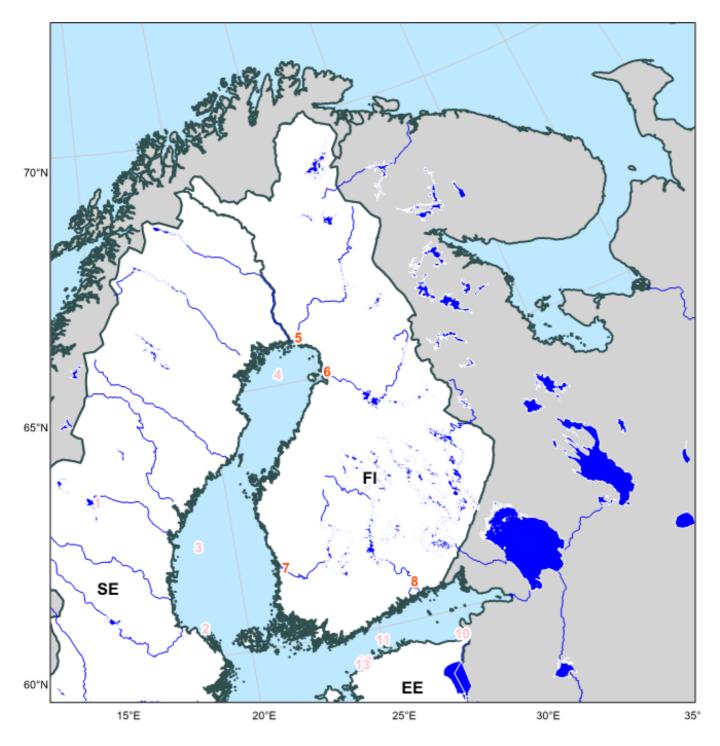
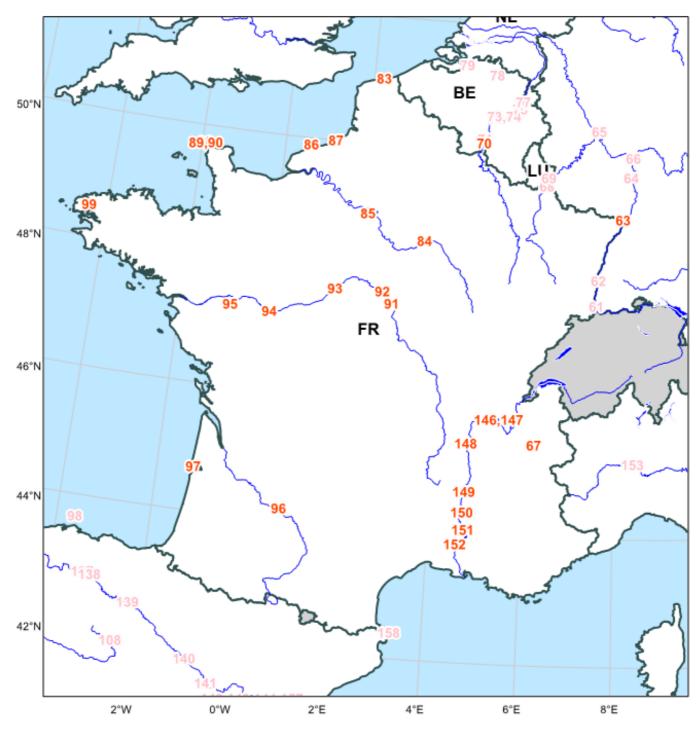


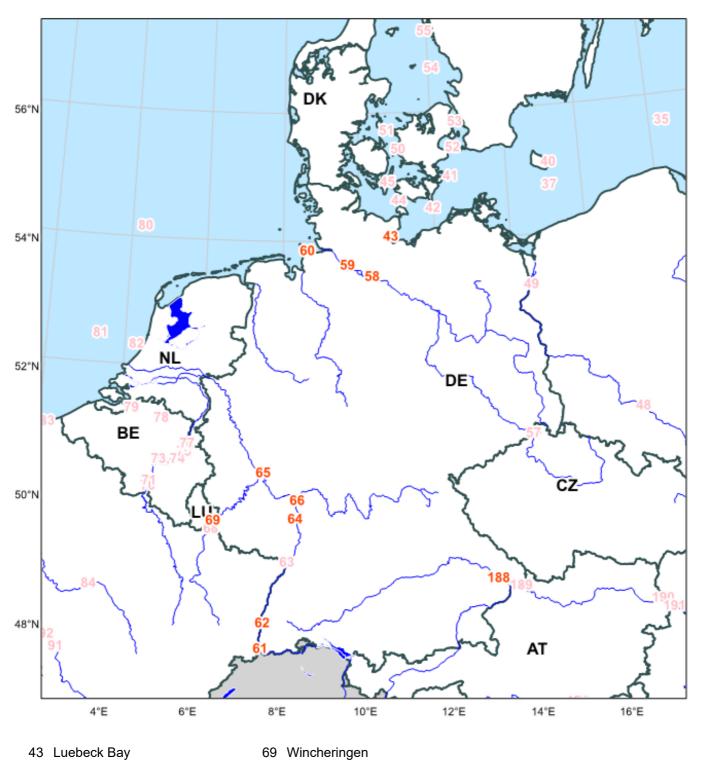
Fig. S9 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Estonia

- 9 Narva
- 10 Gulf Of Finland, N8
- 11 Gulf Of Finland, EE17
- 12 Gulf Of Finland, PE
- 13 Gulf Of Finland, PW



- 5 Kemi
- 6 Oulu
- 7 Pori
- 8 Kotka

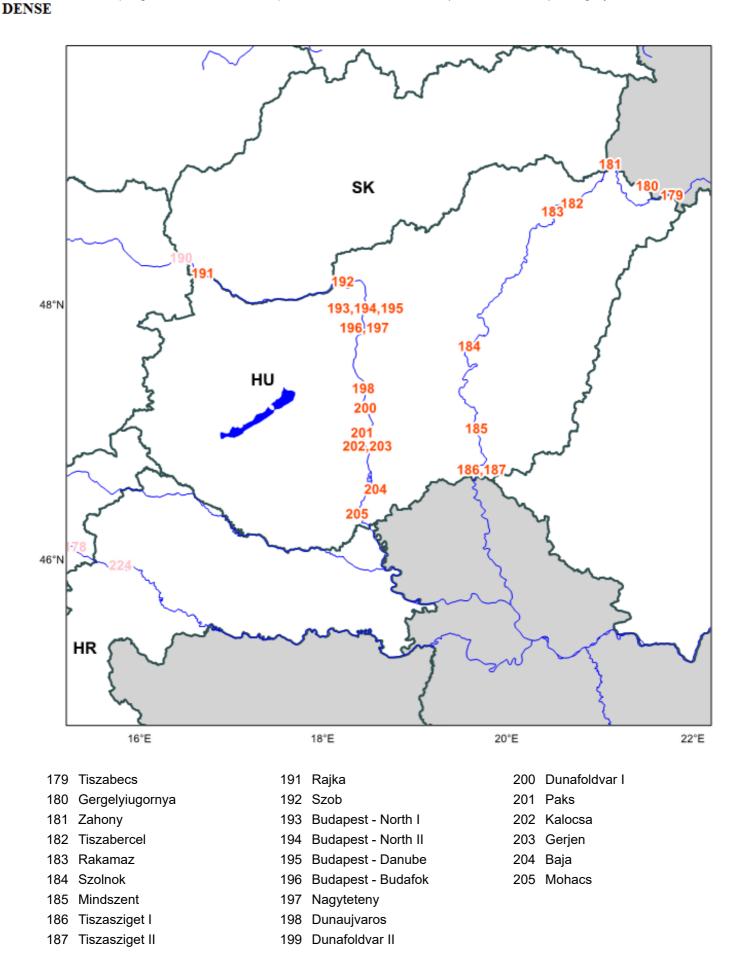
Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): France


- 63 Lauterbourg
- 67 Cattenom (Aval)
- 70 Chooz (Givet)
- 83 Gravelines (EDF)
- 84 Nogent sur Seine
- 85 Le Vesinet
- 86 Paluel
- 87 Penly
- 88 Jobourg

- 89 La Hague-Jardeheu
- 90 Flamanville
- 91 Belleville sur Loire
- 92 Dampierre en Burly
- 93 Saint Laurent des Eaux
- 94 Chinon (Candes-Aval)
- 95 Angers (EDF)
- 96 Golfech St. Romain le Noble
- 97 Arcachon

- 99 Brest
- 146 Creys-Malville (EDF)
- 147 Le Bugey (Loyettes)
- 148 Saint Alban
- 149 Cruas (Aval)
- 150 Tricastin
- 151 Roquemaure (Marcoule)
- 152 Vallabregues

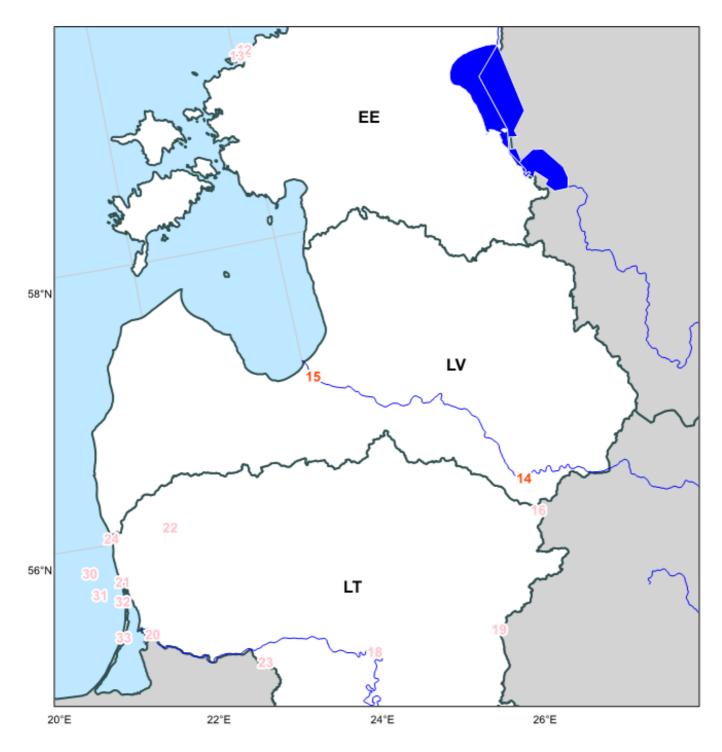
Fig. S12 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Germany



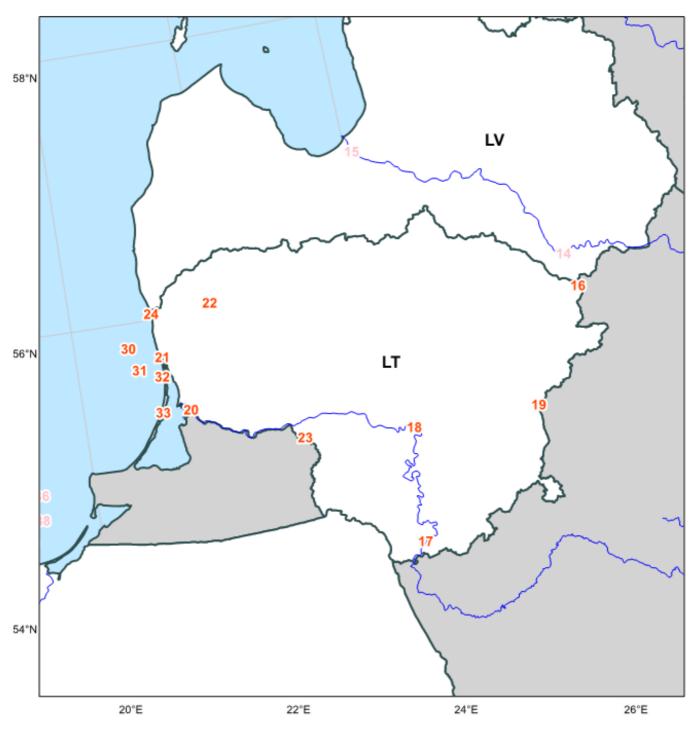
188 Vilshofen


- 43 Luebeck Bay
- 58 Geesthacht
- 59 Wedel
- 60 Cuxhaven
- 61 Weil am Rhein
- 62 Breisach am Rhein
- 64 Worms
- 65 Koblenz
- 66 Trebur

Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Hungary



- 153 Casale Monferrato
- 159 Santa Teresa Gallura
- 160 Olbia
- 161 Maratea
- 162 Rotondella

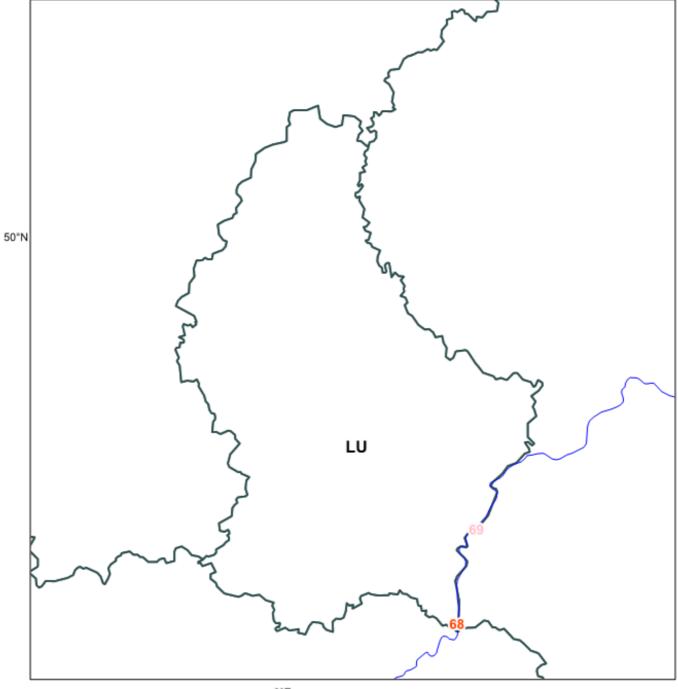

Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Latvia

14 Daugavpils

15 Riga

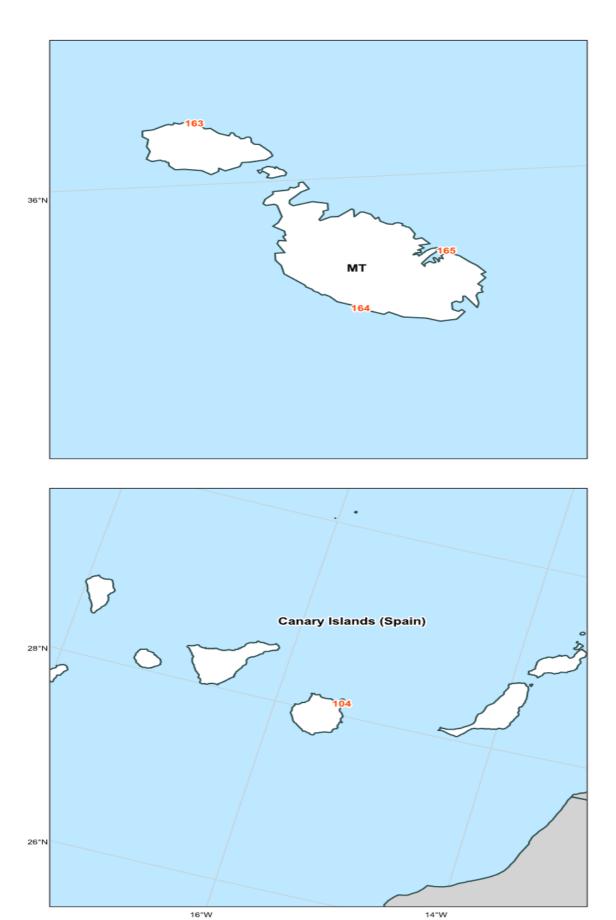
16 Drūkšiai Lake

30 Baltic Sea LT6431 Baltic Sea LT 20


32 Baltic Sea LT6

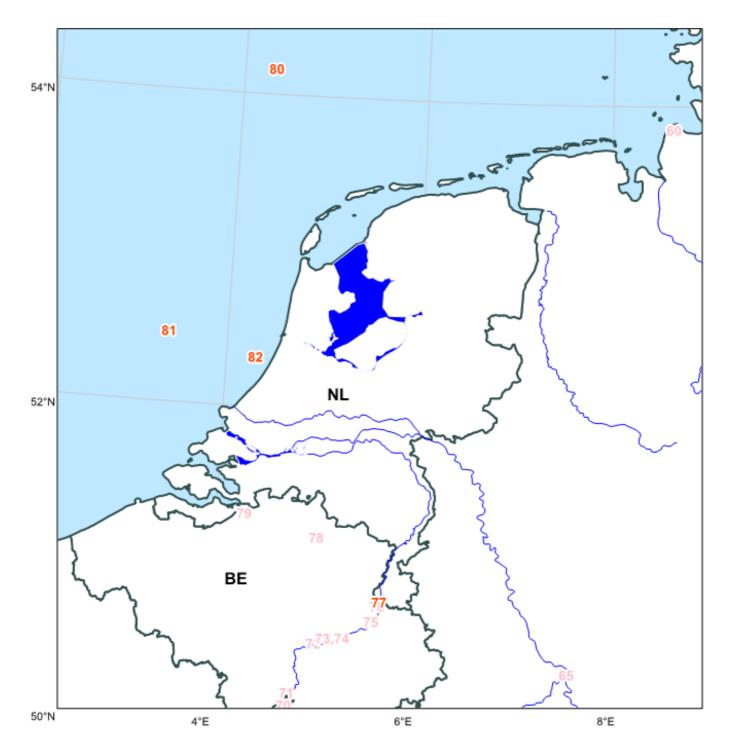
33 Curonian Lagoon LT10

- 17 Neman above Druskininkai
- 18 Kauno Marios
- 19 Neris River Near Buivydžiai
- 20 Skirvytė River
- 21 Akmena-Danė River
- 22 Plateliai Lake
- 23 Šešupė River Transb (Russia)
- 24 Šventoji River Mouth


Fig. S17 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Luxembourg

6°E

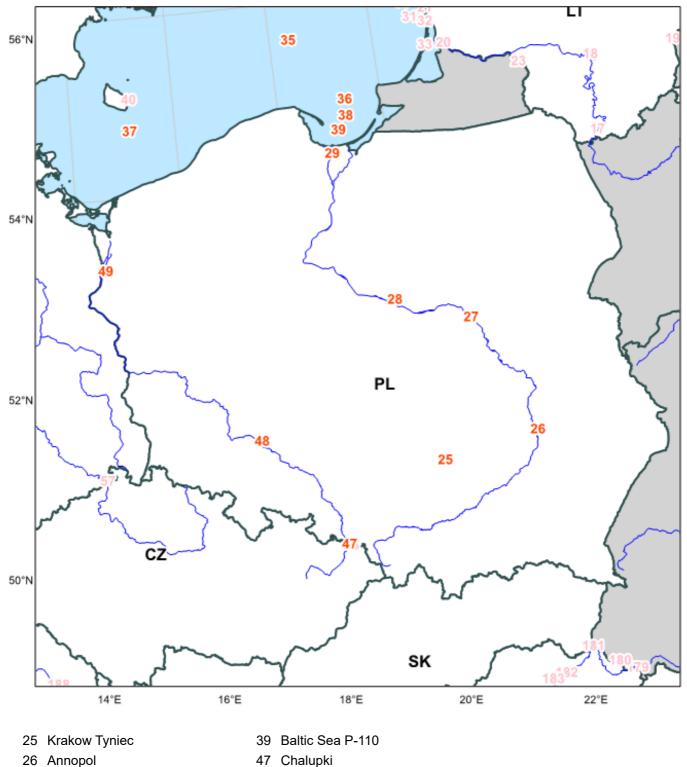
68 Schengen


104: Puerto De Las Palmas

163: Xwejni 164: Lapsi

. 165: Wied Ghammieq

Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): the Netherlands



77 Eijsden

80 Terschelling, 100 km from coast

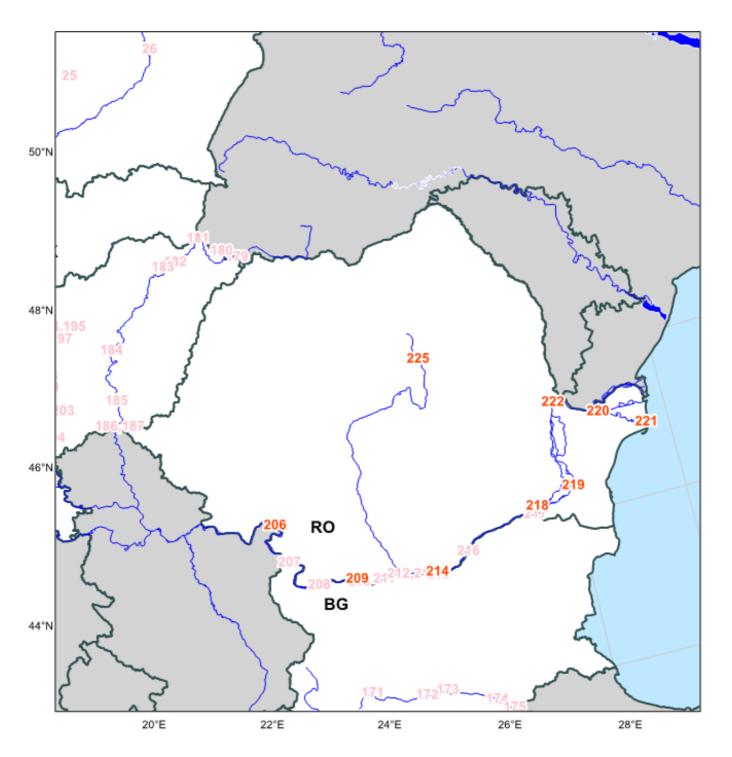
- 81 Noordwijk, 70 km from coast
- 82 Noordwijk, 10 km from coast

48 Wroclaw

49 Krajnik

- 26 Annopol
- 27 Warsaw
- 28 Plock
- 29 Kiezmark
- 35 Baltic Sea P-140
- 36 Baltic Sea P-1
- 37 Baltic Sea P-39
- 38 Baltic Sea P-116

Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Portugal

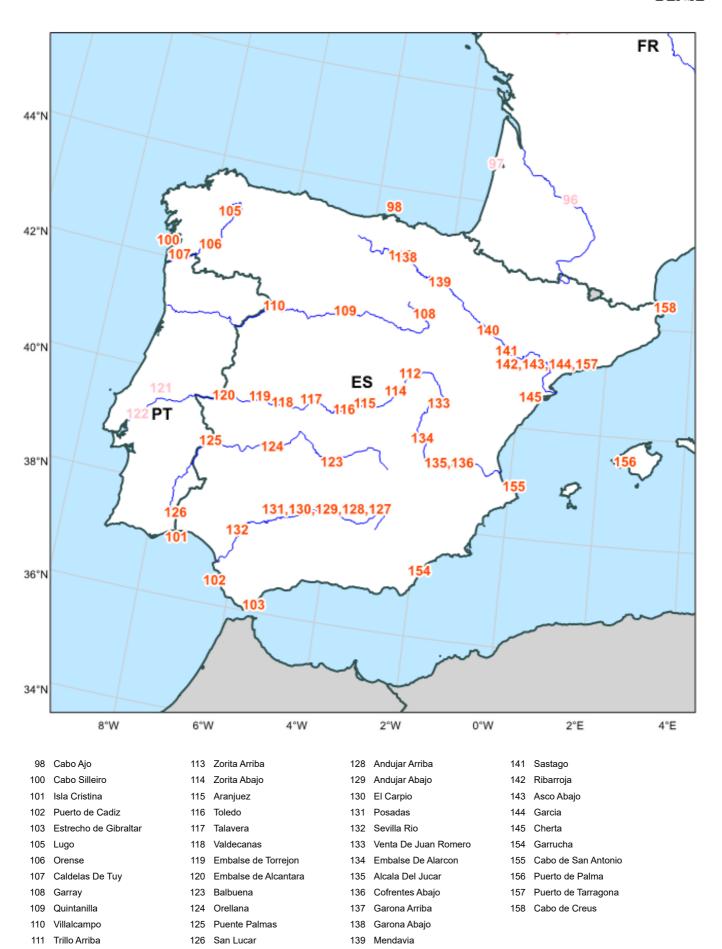


121 Vila Velha de Rodao

122 Valada Do Ribatejo

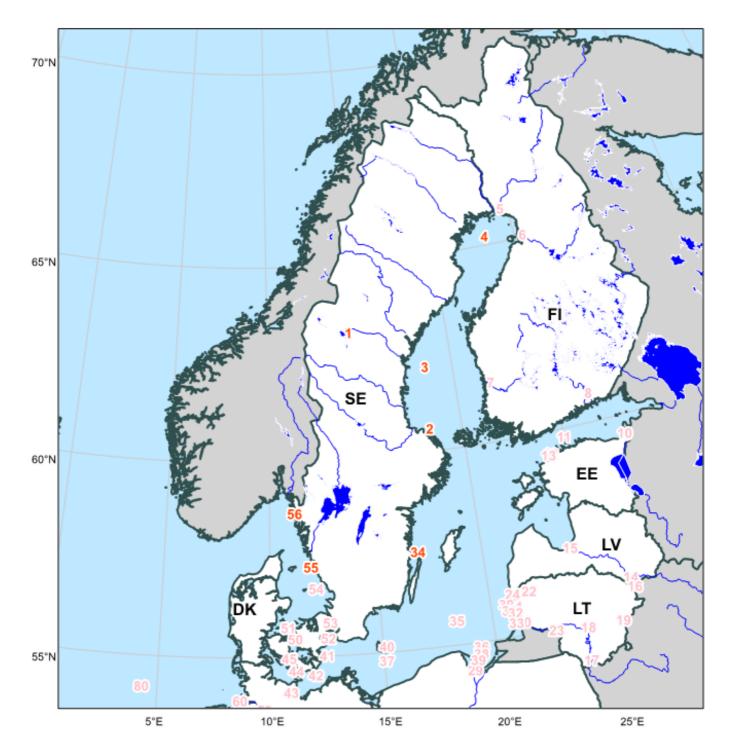
Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Romania

- 206 Drobeta Turnu Severin
- 209 Bechet
- 214 Zimnicea
- 218 Calarasi
- 219 Cernavoda
- 220 Tulcea
- 221 Sfantu Gheorge Tulcea
- 222 Galati
- 225 Miercurea Ciuc


Fig. S23 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Slovenia

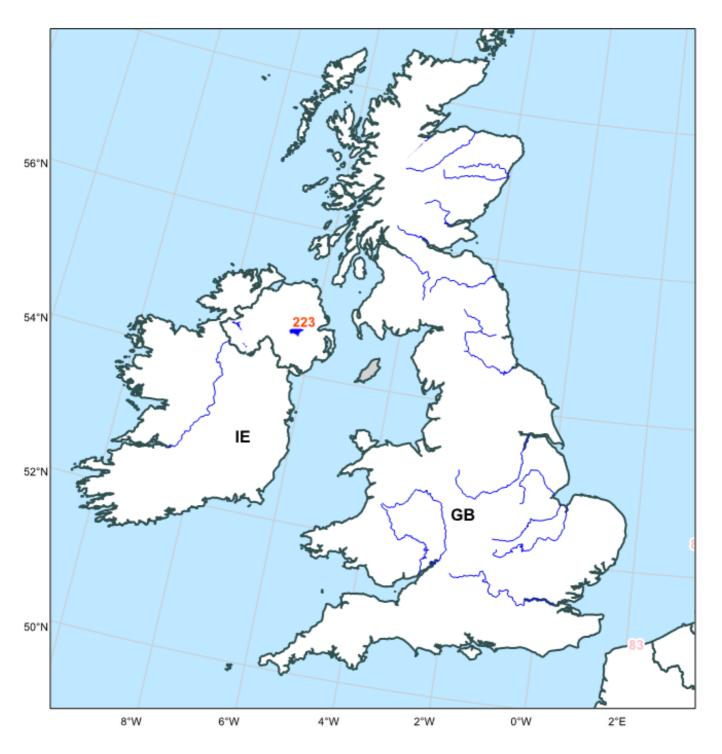
177 Dravograd

178 Krsko


140 Zaragoza-Rio

112 Trillo Abajo

127 Mengibar


Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): Sweden

- 1 Oestersund-Storsjoen
- 2 Forsmark (F135)
- 3 Bottenhavet (C14)
- 4 Bottenviken (A5)
- 34 Oskarshamn (S36)
- 55 Ringhals (35)
- 56 Fjaellbacka

Fig. S26 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 – S72): United Kingdom

223 Lough Neagh

Table S1: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 surface water (Bq I⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE								
Gulf Of Bothnia	2	Forsmark (F135)	SE								
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE								
Kemijoki	5	Kemi	FI								
Oulujoki	6	Oulu	FI								
Kokemaenjoki	7	Pori	FI								
Kymijoki	8	Kotka	FI								
Narva	9	Narva	EE								
Gulf Of Finland	10	Gulf Of Finland, N8	EE								
	11	Gulf Of Finland, EE17	EE								
	12	Gulf Of Finland, PE	EE								
	13	Gulf Of Finland, PW	EE								
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT								
Neman	17	Neman above Druskininkai	LT								
	18	Kauno Marios	LT								
	19	Neris River Near Buivydžiai	LT								
	20	Skirvytė River	LT								
	21	Akmena-Danė River	LT								
	22	Plateliai Lake	LT								
	23	Šešupė River Transb (Russia)	LT								
	24	Šventoji River Mouth	LT								
Vistula	25	Krakow Tyniec	PL								
	26	Annopol	PL								
	27	Warsaw	PL								
	28	Plock	PL								
	29	Kiezmark	PL								
Baltic Sea	30	Baltic Sea LT64	LT								
	31	Baltic Sea LT 20	LT								
	32	Baltic Sea LT6	LT								
	33	Curonian Lagoon LT10	LT								
	34	Oskarshamn (S36)	SE								
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S2: Time averages

YEAR	:	2015
SAMPLE TYPE	:	surface water (Bq l ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Baltic Sea	41	Moen	DK								
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK								
Oder	46	Bohumin	CZ	4	< RL						
	47	Chalupki	PL								
	48	Wroclaw	PL								
	49	Krajnik	PL								
The Great Belt	50	Halskov Rev	DK								
	51	Asnaes Rev	DK								
The Sound	52	The Sound S	DK								
	53	The Sound N(A)	DK								
Kattegat	54	Kattegat-413	DK								
	55	Ringhals (35)	SE								
Skagerrak	56	Fjaellbacka	SE								
Elbe	57	Hrensko	CZ	4	< RL						
	58	Geesthacht	DE								
	59	Wedel	DE								
	60	Cuxhaven	DE								
Rhine	61	Weil am Rhein	DE								
	62	Breisach am Rhein	DE								
	63	Lauterbourg	FR								
	64	Worms	DE								
	65	Koblenz	DE								
	66	Trebur	DE								
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU								
	69	Wincheringen	DE								
Meuse	70	Chooz (Givet)	FR	<u> </u>							
	71	Heer-Agimont	BE								
	72	Andenne	BE								
	73	Huy	BE								
	74	Ampsin	BE								
	75	Monsin	BE								
	76	Lixhe	BE								
	77	Eijsden	NL	13	< RL						
Molse Nete	78	Geel	BE	13	- NL	SINE	SINL	SINL	- NL	- INL	
moise nete	10	0.01	DE								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S3: Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from coast	NL								
	81	Noordwijk, 70 km from coast	NL	4	< RL	5					
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR								
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR								
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES						Δ		
	99	Brest	FR								
	100	Cabo Silleiro	ES						Δ		
	101	Isla Cristina	ES						Δ		
	102	Puerto de Cadiz	ES						Δ		
	103	Estrecho de Gibraltar	ES						Δ		
	104	Puerto De Las Palmas	ES						Δ		
Mino	105	Lugo	ES	4	< RL	1					
	106	Orense	ES	4	< RL	4					
	107	Caldelas De Tuy	ES	4	< RL	7					
Duero	108	Garray	ES	4	< RL	7					
	109	Quintanilla	ES	4	< RL	4					
	110	Villalcampo	ES	4	< RL	7					
Tagus	111	Trillo Arriba	ES	4	< RL	3					
	112	Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	10
	113	Zorita Arriba	ES	11	< RL	< RL	< RL	< RL	< RL	< RL	4
	114	Zorita Abajo	ES	3		< RL	12				
	115	Aranjuez	ES	4	< RL	3					
	116	Toledo	ES	4	< RL	6					
	117	Talavera	ES	4	< RL	9					

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S4:

Time averages

YEAR	:	2015
SAMPLE TYPE	:	surfac
NUCLIDE CATEGORY	:	residu

2020	
surface water (Bq l	⁻¹)
residual-β	

Catchment		Locality		N	1st	2nd	3rd	4th	Annual	Monthly	М
					quarter	quarter	quarter	quarter	avg.	max	
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	119	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	ç
	120	Embalse de Alcantara	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	ç
	121	Vila Velha de Rodao	РТ								
	122	Valada Do Ribatejo	PT								
Guadiana	123	Balbuena	ES	4	< RL < RL	ç					
	124	Orellana	ES	4	< RL < RL	e					
	125	Puente Palmas	ES	4	< RL < RL	11					
	126	San Lucar	ES	4	< RL < RL	ç					
Guadalquivir	127	Mengibar	ES	4	< RL < RL	10					
	128	Andujar Arriba	ES	4	< RL < RL	7					
	129	Andujar Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	11
	130	El Carpio	ES	4	< RL < RL	4					
	131	Posadas	ES	4	< RL < RL	10					
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL < RL	ł					
	134	Embalse De Alarcon	ES	4	< RL < RL	ξ					
	135	Alcala Del Jucar	ES	4	< RL < RL	11					
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
Ebro	137	Garona Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	138	Garona Abajo	ES	24	< RL	< RL	< RL	< RL	< RL	< RL	1
	139	Mendavia	ES	4	< RL < RL	10					
	140	Zaragoza-Rio	ES	4	< RL < RL	7					
	141	Sastago	ES	4	< RL < RL	7					
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	11
	144	Garcia	ES								
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Po	153	Casale Monferrato	IT								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S5: Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES						Δ		
Jea	155	Cabo de San Antonio	ES						Δ		
	156	Puerto de Palma	ES						Δ		
	157	Puerto de Tarragona	ES						Δ		
	158	Cabo de Creus	ES						Δ		
	159	Santa Teresa Gallura	п								
	160	Olbia	п								
	161	Maratea	п								
	162	Rotondella	п								
	163	Xwejni	мт								
	164	Lapsi	мт								
	165	Wied Ghammieq	мт								
	166	Polis	СҮ								
	167	Limassol	СҮ								
	168	Vasilikos	СҮ								
	169	Larnaca	СҮ								
	170	Paralimni	СҮ								
Maritsa	171	Kostenec	BG								
Mantou	172	Plovdiv	BG								
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	26	< RL	< RL	< RL	< RL	< RL	< RL	3
	177	Dravograd	SI								
Sava	178	Krsko	SI								
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185	Mindszent	HU								
	186	Tiszasziget I	HU								
	187	Tiszasziget II	HU								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S6:

Time averages

YEAR	:	2015
SAMPLE TYPE	:	surface water (Bq l ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE								
	189	Jochenstein	AT	17	< RL	4					
	190	Wolfsthal	AT	12	< RL						
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Baja	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	360	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	360	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	359	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	360	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	355	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	360	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	360	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	360	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR								
Olt	225	Miercurea Ciuc	RO	351	< RL	< RL	< RL	< RL	< RL	< RL	1

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S7: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2016 surface water (Bq I⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE								
Gulf Of Bothnia	2	Forsmark (F135)	SE								
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE								
Kemijoki	5	Kemi	FI								
Oulujoki	6	Oulu	FI								
Kokemaenjoki	7	Pori	FI								
Kymijoki	8	Kotka	FI								
Narva	9	Narva	EE								
Gulf Of Finland	10	Gulf Of Finland, N8	EE								
	11	Gulf Of Finland, EE17	EE								
	12	Gulf Of Finland, PE	EE								
	13	Gulf Of Finland, PW	EE								
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT								
Neman	17	Neman above Druskininkai	LT								
	18	Kauno Marios	LT								
	19	Neris River Near Buivydžiai	LT								
	20	Skirvytė River	LT								
	21	Akmena-Danė River	LT								
	22	Plateliai Lake	LT								
	23	Šešupė River Transb (Russia)	LT								
	24	Šventoji River Mouth	LT								
Vistula	25	Krakow Tyniec	PL	-							
	26	Annopol	PL								
	27	Warsaw	PL								
	28	Plock	PL								
	29	Kiezmark	PL								
Baltic Sea	30	Baltic Sea LT64	LT								
	31	Baltic Sea LT 20	LT								
	32	Baltic Sea LT6	LT								
	33	Curonian Lagoon LT10	LT								
	34	Oskarshamn (S36)	SE								
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S8:

Time averages

YEAR	:	2016
SAMPLE TYPE	:	surface water (Bq l ⁻¹)
NUCLIDE CATEGORY	:	residual- B

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Baltic Sea	41	Moen	DK								
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK								
Oder	46	Bohumin	CZ	4	< RL	10					
	47	Chalupki	PL								
	48	Wroclaw	PL								
	49	Krajnik	PL								
The Great Belt	50	Halskov Rev	DK								
	51	Asnaes Rev	DK								
The Sound	52	The Sound S	DK								
	53	The Sound N(A)	DK								
Kattegat	54	Kattegat-413	DK								
	55	Ringhals (35)	SE								
Skagerrak	56	Fjaellbacka	SE								
Elbe	57	Hrensko	CZ	4	< RL	< RL	< RL		< RL	< RL	4
	58	Geesthacht	DE								
	59	Wedel	DE								
	60	Cuxhaven	DE								
Rhine	61	Weil am Rhein	DE								
	62	Breisach am Rhein	DE								
	63	Lauterbourg	FR								
	64	Worms	DE								
	65	Koblenz	DE								
	66	Trebur	DE								
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU								
	69	Wincheringen	DE								
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE								
	72	Andenne	BE								
	73	Huy	BE								
	74	Ampsin	BE								
	75	Monsin	BE								
	76	Lixhe	BE								
	77	Eijsden	NL	13	< RL	2					
Molse Nete	78	Geel	BE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- NE	- NE	- NE			
	79	Doel	BE								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

69

Table S9:Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2016 surface water (Bq l ⁻¹) residual-β

Terschelling, 100 km from coast Noordwijk, 70 km from coast Noordwijk, 10 km from coast Gravelines (EDF) Nogent sur Seine Le Vesinet Paluel Penly Jobourg La Hague-Jardeheu Flamanville Belleville sur Loire	NL NL FR FR FR FR FR FR FR	4	< RL	< RL	< RL	< RL	< RL	< RL	5
Noordwijk, 70 km from coast Noordwijk, 10 km from coast Gravelines (EDF) Nogent sur Seine Le Vesinet Paluel Penly Jobourg La Hague-Jardeheu Flamanville	NL FR FR FR FR FR	4	< RL	< RL	< RL	< RL	< RL	< RL	5
Gravelines (EDF) Nogent sur Seine Le Vesinet Paluel Penly Jobourg La Hague-Jardeheu Flamanville	FR FR FR FR FR FR								
Nogent sur Seine Le Vesinet Paluel Penly Jobourg La Hague-Jardeheu Flamanville	FR FR FR FR FR								
Le Vesinet Paluel Penly Jobourg La Hague-Jardeheu Flamanville	FR FR FR FR								
Paluel Penly Jobourg La Hague-Jardeheu Flamanville	FR FR FR								
Penly Jobourg La Hague-Jardeheu Flamanville	FR FR								
Jobourg La Hague-Jardeheu Flamanville	FR								
La Hague-Jardeheu Flamanville									
Flamanville	FR								
Belleville sur Loire	FR								
	FR								
Dampierre en Burly	FR								
Saint Laurent des Eaux	FR								
Chinon (Candes-Aval)	FR								
Angers (EDF)	FR								
Golfech - St. Romain le Noble	FR								
Arcachon	FR								
Cabo Ajo	ES						Δ		
Brest	FR								
Cabo Silleiro	ES						Δ		
Isla Cristina	ES						Δ		
Puerto de Cadiz	ES						Δ		
Estrecho de Gibraltar	ES						Δ		
Puerto De Las Palmas	ES						Δ		
Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	8
Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	6
Zorita Abajo	ES	3	< RL	< RL	< RL		< RL	< RL	9
Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
Toledo									6
	OrenseCaldelas De TuyGarrayQuintanillaVillalcampoTrillo ArribaTrillo AbajoZorita ArribaZorita AbajoAranjuezToledo	OrenseESCaldelas De TuyESGarrayESQuintanillaESVillalcampoESTrillo ArribaESTrillo AbajoESZorita ArribaESZorita AbajoESAranjuezES	OrenseES4Caldelas De TuyES4GarrayES4QuintanillaES4VillalcampoES4Trillo ArribaES4Trillo AbajoES13Zorita ArribaES12Zorita AbajoES3AranjuezES4ToledoES4	OrenseES4< RLCaldelas De TuyES4< RL	OrenseES4 <rl< th=""><rl< th="">Caldelas De TuyES4<rl< td=""><rl< td="">GarrayES4<rl< td=""><rl< td="">QuintanillaES4<rl< td=""><rl< td="">VillalcampoES4<rl< td=""><rl< td="">Trillo AtribaES4<rl< td=""><rl< td="">Zorita AtribaES13<rl< td=""><rl< td="">Zorita AbajoES3<rl< td=""><rl< td="">AranjuezES4<rl< td=""><rl< td="">ToledoES4<rl< td=""><rl< td=""></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>	OrenseES4 <rl< th=""><rl< th=""><rl< th="">Caldelas De TuyES4<rl< td=""><rl< td=""><rl< td="">GarrayES4<rl< td=""><rl< td=""><rl< td="">QuintanillaES4<rl< td=""><rl< td=""><rl< td="">VillalcampoES4<rl< td=""><rl< td=""><rl< td="">Trillo AbajoES13<rl< td=""><rl< td=""><rl< td="">Zorita ArribaES12<rl< td=""><rl< td=""><rl< td="">Zorita AbajoES3<rl< td=""><rl< td=""><rl< td="">AranjuezES4<rl< td=""><rl< td=""><rl< td="">ToledoES4<rl< td=""><rl< td=""><rl< td=""></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>	OrenseES4 <rl< th=""><rl< th=""><rl< th=""><rl< th=""><rl< th=""><rl< th="">Caldelas De TuyES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">GarrayES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">QuintanillaES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">VillalcampoES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">Trillo AtribaES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">Zorita AtribaES13<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">Zorita AbajoES3<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">AranjuezES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">ToledoES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>	OrenseES4 <rl< th=""><rl< th=""><rl< th=""><rl< th=""><rl< th=""><rl< th=""><rl< th=""><rl< th="">Caldelas De TuyES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">GarrayES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">QuintanillaES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">VillalcampoES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">Trillo AbajoES13<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">Zorita AbajoES12<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">AranjuezES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td="">ToledoES4<rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""><rl< td=""></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>	OrenseES4 <rl< th=""><rl< th=""><r< td=""></r<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S10: Time averages

YEAR	:	2016
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	119	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	8
	120	Embalse de Alcantara	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	121	Vila Velha de Rodao	РТ								
	122	Valada Do Ribatejo	PT								
Guadiana	123	Balbuena	ES	3	< RL	< RL	< RL		< RL	< RL	9
	124	Orellana	ES	4	< RL	3					
	125	Puente Palmas	ES	4	< RL	12					
	126	San Lucar	ES	4	< RL	3					
Guadalquivir	127	Mengibar	ES	4	< RL	4					
	128	Andujar Arriba	ES	4	< RL	7					
	129	Andujar Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	130	El Carpio	ES	4	< RL	7					
	131	Posadas	ES	4	< RL	1					
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL	11					
	134	Embalse De Alarcon	ES	4	< RL	8					
	135	Alcala Del Jucar	ES	4	< RL	8					
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	7
Ebro	137	Garona Arriba	ES	14	< RL	< RL	< RL	< RL	< RL	< RL	5
	138	Garona Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	12
	139	Mendavia	ES	4	< RL	1					
	140	Zaragoza-Rio	ES	4	< RL	1					
	141	Sastago	ES	4	< RL	1					
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	11
	144	Garcia	ES								
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	IT								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S11: Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2016 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES	1		8.5E-01			8.5E-01	8.5E-01	5
ocu	155	Cabo de San Antonio	ES						Δ		
	156	Puerto de Palma	ES						Δ		
	157	Puerto de Tarragona	ES						Δ		
	158	Cabo de Creus	ES	1	1.0E+00				1.0E+00	1.0E+00	3
	159	Santa Teresa Gallura	ІТ								
	160	Olbia	IT								
	161	Maratea	IT								
	162	Rotondella	ІТ								
	163	Xwejni	МТ								
	164	Lapsi	МТ								
	165	Wied Ghammieq	МТ								
	166	Polis	СҮ								
	167	Limassol	СҮ								
	168	Vasilikos	СҮ								
	169	Larnaca	СҮ								
	170	Paralimni	СҮ								
Maritsa	171	Kostenec	BG								
	172	Plovdiv	BG								
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	16	< RL	< RL	< RL	< RL	< RL	< RL	2
	177	Dravograd	SI								
Sava	178	Krsko	SI								
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182 183	Tiszabercel Rakamaz	ни ни								
	184	Szolnok	но								
	185	Mindszent	HU								
	186	Tiszasziget I	ни								
	187	Tiszasziget II	HU								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S12: Time averages

YEAR	:	2016
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE								
	189	Jochenstein	AT	17	< RL						
	190	Wolfsthal	AT	12	< RL						
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Ваја	HU								
		Mohacs	HU								
	206	Drobeta Turnu Severin	RO	370	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	370	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	371	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	371	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	370	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	371	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	371	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	371	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR								
Olt	225	Miercurea Ciuc	RO	371	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S13: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2017 surface water (Bq I⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	Μ
Indalsaelven	1	Oestersund-Storsjoen	SE								
Gulf Of Bothnia	2	Forsmark (F135)	SE								
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE								
Kemijoki	5	Kemi	FI								
Oulujoki	6	Oulu	FI								
Kokemaenjoki	7	Pori	FI								
Kymijoki	8	Kotka	FI								
Narva	9	Narva	EE								
Gulf Of Finland	10	Gulf Of Finland, N8	EE								
	11	Gulf Of Finland, EE17	EE								
	12	Gulf Of Finland, PE	EE								
	13	Gulf Of Finland, PW	EE								
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT								
Neman	17	Neman above Druskininkai	LT	-							
	18	Kauno Marios	LT								
	19	Neris River Near Buivydžiai	LT								
	20	Skirvytė River	LT								
	21	Akmena-Danė River	LT								
	22	Plateliai Lake	LT								
	23	Šešupė River Transb (Russia)	LT								
	24	Šventoji River Mouth	LT								
Vistula	25	Krakow Tyniec	PL								
· lotulu	26	Annopol	PL								
	27	Warsaw	PL								
	28	Plock	PL								
	29	Kiezmark	PL								
Baltic Sea	30	Baltic Sea LT64	LT								
Danie Sea	31	Baltic Sea LT 20	LT								
	32	Baltic Sea LT6	ЦТ								
	33	Curonian Lagoon LT10	LT								
	34	Oskarshamn (S36)	SE								
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S14: Time averages

ACTED AND DRIVER CALD	節
	2
	8
10 13	
200	8
DENSE	

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Baltic Sea	41	Moen	DK								
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK								
Oder	46	Bohumin	CZ	4	< RL						
	47	Chalupki	PL								
	48	Wroclaw	PL								
	49	Krajnik	PL								
The Great Belt	50	Halskov Rev	DK								
	51	Asnaes Rev	DK								
The Sound	52	The Sound S	DK								
	53	The Sound N(A)	DK								
Kattegat	54	Kattegat-413	DK	<u> </u>							
	55	Ringhals (35)	SE								
Skagerrak	56	Fjaellbacka	SE								
Elbe	57	Hrensko	CZ	4	< RL	1					
	58	Geesthacht	DE								
	59	Wedel	DE								
	60	Cuxhaven	DE								
Rhine	61	Weil am Rhein	DE	-							
	62	Breisach am Rhein	DE								
	63	Lauterbourg	FR								
	64	Worms	DE								
	65	Koblenz	DE								
	66	Trebur	DE								
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU								
	69	Wincheringen	DE								
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE								
	72	Andenne	BE								
	73	Huy	BE								
	74	Ampsin	BE								
	75	Monsin	BE								
	76	Lixhe	BE								
	77	Eijsden	NL	13	< RL	1.					
Molse Nete	78	Geel	BE								
Scheldt	79	Doel	BE								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

75

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2017 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from	NL								
	81	coast Noordwijk, 70 km from coast	NL	4	< RL	8					
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR								
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR								
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES						Δ		
	99	Brest	FR								
	100	Cabo Silleiro	ES						Δ		
	101	Isla Cristina	ES						Δ		
	102	Puerto de Cadiz	ES	1				9.2E-01	9.2E-01	9.2E-01	10
	103	Estrecho de Gibraltar	ES						Δ		
	104	Puerto De Las Palmas	ES						Δ		
Mino	105	Lugo	ES	4	< RL	10					
	106	Orense	ES	4	< RL	5					
	107	Caldelas De Tuy	ES	4	< RL	4					
Duero	108	Garray	ES	4	< RL	7					
	109	Quintanilla	ES	4	< RL	10					
	110	Villalcampo	ES	4	< RL	2					
Tagus	111	Trillo Arriba	ES	4	< RL	9					
	112	Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	2
	113	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	114	Zorita Abajo	ES	4	< RL	12					
	115	Aranjuez	ES	4	< RL	6					
	116	Toledo	ES	4	< RL	9					
	117	Talavera	ES	4	< RL	9					

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S16: Time averages

Thine averages

YEAR:2017SAMPLE TYPE:surface watNUCLIDE CATEGORY:residual-β

urface	water	(Bq l ⁻¹)
		•••	•

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	119	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	6
	120	Embalse de Alcantara	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	121	Vila Velha de Rodao	РТ								
	122	Valada Do Ribatejo	РТ								
Guadiana	123	Balbuena	ES	3	< RL		< RL	< RL	< RL	< RL	3
	124	Orellana	ES	4	< RL	12					
	125	Puente Palmas	ES	4	< RL	6					
	126	San Lucar	ES	4	< RL	9					
Guadalquivir	127	Mengibar	ES	4	< RL	7					
	128	Andujar Arriba	ES	4	< RL	7					
	129	Andujar Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	130	El Carpio	ES	4	< RL	10					
	131	Posadas	ES	4	< RL	10					
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL	5					
	134	Embalse De Alarcon	ES	4	< RL	2					
	135	Alcala Del Jucar	ES	4	< RL	11					
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
Ebro	137	Garona Arriba	ES	14	< RL	< RL	< RL	< RL	< RL	< RL	2
	138	Garona Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	6
	139	Mendavia	ES	4	< RL	10					
	140	Zaragoza-Rio	ES	4	< RL	10					
	141	Sastago	ES	4	< RL	7					
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	11
	144	Garcia	ES								
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	ІТ								

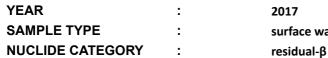
RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S17: Time averages

1

:

:


YEAR SAMPLE TYPE NUCLIDE CATEGORY

2017 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES						Δ		
Sea	155	Cabo de San Antonio	ES						Δ		
	156	Puerto de Palma	ES						Δ		
	157	Puerto de Tarragona	ES						Δ		
	158	Cabo de Creus	ES						Δ		
	159	Santa Teresa Gallura	п								
	160	Olbia	п								
	161	Maratea	п								
	162	Rotondella	п								
	163	Xwejni	мт								
	164	Lapsi	мт								
	165	Wied Ghammieq	мт								
	166	Polis	СҮ								
	167	Limassol	СҮ								
	168	Vasilikos	СҮ								
	169	Larnaca	СҮ								
	170	Paralimni	сү								
Maritsa	171	Kostenec	BG								
	172	Plovdiv	BG								
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	25	< RL	< RL	< RL	< RL	< RL	< RL	2
	177	Dravograd	SI								
Sava	178	Krsko	SI								
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185	Mindszent	HU								
	186	Tiszasziget I	HU								
	187	Tiszasziget II	HU								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S18: Time averages

surface water (Bq I ⁻¹)
residual O

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE								
	189	Jochenstein	AT	17	< RL						
	190	Wolfsthal	AT	12	< RL						
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Ваја	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	363	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	345	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	325	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	332	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	361	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	345	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR								
Olt	225	Miercurea Ciuc	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S19: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 surface water (Bq I⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE								
Gulf Of Bothnia	2	Forsmark (F135)	SE								
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE								
Kemijoki	5	Kemi	FI								
Oulujoki	6	Oulu	FI								
Kokemaenjoki	7	Pori	FI								
Kymijoki	8	Kotka	FI								
Narva	9	Narva	EE								
Gulf Of Finland	10	Gulf Of Finland, N8	EE								
	11	Gulf Of Finland, EE17	EE								
	12	Gulf Of Finland, PE	EE								
	13	Gulf Of Finland, PW	EE								
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT								
Neman	17	Neman above Druskininkai	LT								
	18	Kauno Marios	LT								
	19	Neris River Near Buivydžiai	LT								
	20	Skirvytė River	LT								
	21	Akmena-Danė River	LT								
	22	Plateliai Lake	LT								
	23	Šešupė River Transb (Russia)	LT								
	24	Šventoji River Mouth	LT								
Vistula	25	Krakow Tyniec	PL	-							
	26	Annopol	PL								
	27	Warsaw	PL								
	28	Plock	PL								
	29	Kiezmark	PL								
Baltic Sea	30	Baltic Sea LT64	LT								
	31	Baltic Sea LT 20	LT								
	32	Baltic Sea LT6	LT								
	33	Curonian Lagoon LT10	LT								
	34	Oskarshamn (S36)	SE								
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S20: Time averages

YEAR	:	2018
SAMPLE TYPE	:	surface water (Bq l ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Baltic Sea	41	Moen	DK								
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK								
Oder	46	Bohumin	CZ								
	47	Chalupki	PL								
	48	Wroclaw	PL								
	49	Krajnik	PL								
The Great Belt	50	Halskov Rev	DK								
The Great Deit	51	Asnaes Rev	DK								
The Sound	52	The Sound S	DK								
The Sound	53	The Sound N(A)	DK								
Kattagat	54	Kattegat-413	DK								
Kattegat	54 55		SE								
Skanamak		Ringhals (35)									
Skagerrak	56	Fjaellbacka	SE 07								
Elbe	57	Hrensko	CZ								
	58	Geesthacht	DE								
	59	Wedel	DE								
	60	Cuxhaven	DE								
Rhine	61	Weil am Rhein	DE								
	62	Breisach am Rhein	DE								
	63	Lauterbourg	FR								
	64	Worms	DE								
	65	Koblenz	DE								
	66	Trebur	DE								
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU								
	69	Wincheringen	DE								
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE								
	72	Andenne	BE								
	73	Huy	BE								
	74	Ampsin	BE								
	75	Monsin	BE								
	76	Lixhe	BE								
	77	Eijsden	NL	13	< RL	< RL	< RL	< RL	< RL	< RL	1
Molse Nete	78	Geel	BE								
Scheldt	79	Doel	BE								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

DENSE

Table S21: Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from coast	NL								
	81	Noordwijk, 70 km from coast	NL	4	< RL	5					
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR								
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR								
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES						Δ		
	99	Brest	FR								
	100	Cabo Silleiro	ES						Δ		
	101	Isla Cristina	ES						Δ		
	102	Puerto de Cadiz	ES	1		9.5E-01			9.5E-01	9.5E-01	5
	103	Estrecho de Gibraltar	ES						Δ		
	104	Puerto De Las Palmas	ES						Δ		
Mino	105	Lugo	ES	4	< RL	10					
	106	Orense	ES	4	< RL	1					
	107	Caldelas De Tuy	ES	4	< RL	1					
Duero	108	Garray	ES	4	< RL	4					
	109	Quintanilla	ES	4	< RL	4					
	110	Villalcampo	ES	4	< RL	7					
Tagus	111	Trillo Arriba	ES	4	< RL	12					
	112	Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	6
	113	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	114	Zorita Abajo	ES	4	< RL	6					
	115	Aranjuez	ES	4	< RL	3					
	116	Toledo	ES	4		< RL	4				
	117	Talavera	ES	4	< RL	3					

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

82

Table S22: Time averages

YEAR	:	2018
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st	2nd	3rd	4th	Annual	Monthly	М
					quarter	quarter	quarter	quarter	avg.	max	
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	119	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	3
	120	Embalse de Alcantara	ES	11	< RL	< RL	< RL	< RL	< RL	< RL	1
	121	Vila Velha de Rodao	PT								
	122	Valada Do Ribatejo	PT								
Guadiana	123	Balbuena	ES	4	< RL < RL	12					
	124	Orellana	ES	2		< RL		< RL	< RL	< RL	12
	125	Puente Palmas	ES	4	< RL < RL	12					
	126	San Lucar	ES	4	< RL < RL	12					
Guadalquivir	127	Mengibar	ES	3	< RL	< RL	< RL		< RL	< RL	1
	128	Andujar Arriba	ES	4	< RL < RL	1					
	129	Andujar Abajo	ES	10	< RL	< RL	< RL	< RL	< RL	< RL	8
	130	El Carpio	ES	4	< RL < RL	7					
	131	Posadas	ES	4	< RL < RL	1					
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL < RL	8					
	134	Embalse De Alarcon	ES	4	< RL < RL	8					
	135	Alcala Del Jucar	ES	4	< RL < RL	5					
	136	Cofrentes Abajo	ES	11	< RL	< RL	< RL	< RL	< RL	< RL	12
Ebro	137	Garona Arriba	ES	9	< RL	< RL	< RL		< RL	< RL	6
	138	Garona Abajo	ES	23	< RL	< RL	< RL	< RL	< RL	< RL	10
	139	Mendavia	ES	4	< RL < RL	4					
	140	Zaragoza-Rio	ES	4	< RL < RL	1					
	141	Sastago	ES	4	< RL < RL	1					
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	11
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	11
	144	Garcia	ES								
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	IT								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S23: Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES						Δ		
Jea	155	Cabo de San Antonio	ES						Δ		
	156	Puerto de Palma	ES						Δ		
	157	Puerto de Tarragona	ES						Δ		
	158	Cabo de Creus	ES						Δ		
	159	Santa Teresa Gallura	п								
	160	Olbia	п								
	161	Maratea	п								
	162	Rotondella	п								
	163	Xwejni	мт								
	164	Lapsi	мт								
	165	Wied Ghammieq	мт								
	166	Polis	СҮ								
	167	Limassol	СҮ								
	168	Vasilikos	СҮ								
	169	Larnaca	СҮ								
	170	Paralimni	СҮ								
Maritsa	171	Kostenec	BG								
	172	Plovdiv	BG								
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	25	< RL	< RL	< RL	< RL	< RL	< RL	8
	177	Dravograd	SI								
Sava	178	Krsko	SI								
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185 186	Mindszent Tiszasziget I	HU HU								
	186	Tiszasziget I	HU								
	107	nazdaziyet il	по								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S24: Time averages

YEAR	:	2018
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	Ν
Danube	188	Vilshofen	DE								
	189	Jochenstein	AT	16	< RL	1					
	190	Wolfsthal	AT	12	< RL						
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Ваја	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	363	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	359	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	275	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR								
Olt	225	Miercurea Ciuc	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S25: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2019 surface water (Bq I⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE								
Gulf Of Bothnia	2	Forsmark (F135)	SE								
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE								
Kemijoki	5	Kemi	FI								
Oulujoki	6	Oulu	FI	-							
Kokemaenjoki	7	Pori	FI								
Kymijoki	8	Kotka	FI								
Narva	9	Narva	EE								
Gulf Of Finland	10	Gulf Of Finland, N8	EE								
	11	Gulf Of Finland, EE17	EE								
	12	Gulf Of Finland, PE	EE								
	13	Gulf Of Finland, PW	EE								
Daugava	14	Daugavpils	LV	<u> </u>							
	15	Riga	LV								
	16	Drūkšiai Lake	LT								
Neman	17	Neman above Druskininkai	LT								
	18	Kauno Marios	LT								
	19	Neris River Near Buivydžiai	LT								
	20	Skirvytė River	LT								
	21	Akmena-Danė River	LT								
	22	Plateliai Lake	LT								
	23	Šešupė River Transb (Russia)	LT								
	24	Šventoji River Mouth	LT								
Vistula	25	Krakow Tyniec	PL	-							
	26	Annopol	PL								
	27	Warsaw	PL								
	28	Plock	PL								
	29	Kiezmark	PL								
Baltic Sea	30	Baltic Sea LT64	LT	-							
	31	Baltic Sea LT 20	LT								
	32	Baltic Sea LT6	LT								
	33	Curonian Lagoon LT10	LT								
	34	Oskarshamn (S36)	SE								
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S26: Time averages

YEAR	:	2019
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Baltic Sea	41	Moen	DK								
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK								
Oder	46	Bohumin	cz								
	47	Chalupki	PL								
	48	Wroclaw	PL								
	49	Krajnik	PL								
The Great Belt	50	Halskov Rev	DK								
	51	Asnaes Rev	DK								
The Sound	52	The Sound S	DK								
	53	The Sound N(A)	DK								
Kattegat	54	Kattegat-413	DK								
	55	Ringhals (35)	SE								
Skagerrak	56	Fjaellbacka	SE								
Elbe	57	Hrensko	CZ								
	58	Geesthacht	DE								
	59	Wedel	DE								
	60	Cuxhaven	DE								
Rhine	61	Weil am Rhein	DE								
	62	Breisach am Rhein	DE								
	63	Lauterbourg	FR								
	64	Worms	DE								
	65	Koblenz	DE								
	66	Trebur	DE								
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU								
	69	Wincheringen	DE								
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE	2				< RL	< RL	< RL	12
	72	Andenne	BE	2				< RL	< RL	< RL	12
	73	Huy	BE	2				< RL	< RL	< RL	12
	74	Ampsin	BE								
	75	Monsin	BE								
	76	Lixhe	BE	2				< RL	< RL	< RL	12
	77	Eijsden	NL	13	< RL	< RL	< RL	< RL	< RL	< RL	8
Molse Nete	78	Geel	BE	2				< RL	< RL	< RL	12
Scheldt	79	Doel	BE	2			İ	< RL	< RL	< RL	12

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

DENSE

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2019 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from	NL								
	81	coast Noordwijk, 70 km from coast	NL	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR								
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR								
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES						Δ		
	99	Brest	FR								
	100	Cabo Silleiro	ES						Δ		
	101	Isla Cristina	ES						Δ		
	102	Puerto de Cadiz	ES						Δ		
	103	Estrecho de Gibraltar	ES						Δ		
	104	Puerto De Las Palmas	ES								
Mino	105	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	106	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	107	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Duero	108	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	109	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	110	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Tagus	111	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	112	Trillo Abajo	ES	14	< RL	< RL	< RL	< RL	< RL	< RL	8
	113	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	114	Zorita Abajo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	115	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	116	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	117	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S28:

Time averages

YEAR	:	2019
SAMPLE TYPE	:	surface water (Bq l ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	11
	119	Embalse de Torrejon	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	7
	120	Embalse de Alcantara	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	121	Vila Velha de Rodao	РТ								
	122	Valada Do Ribatejo	РТ								
Guadiana	123	Balbuena	ES	3	< RL	< RL	< RL		< RL	< RL	6
	124	Orellana	ES	3	< RL	< RL	< RL		< RL	< RL	3
	125	Puente Palmas	ES	3	< RL	< RL		< RL	< RL	< RL	3
	126	San Lucar	ES	3	< RL	< RL		< RL	< RL	< RL	10
Guadalquivir	127	Mengibar	ES								
	128	Andujar Arriba	ES								
	129	Andujar Abajo	ES								
	130	El Carpio	ES								
	131	Posadas	ES								
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	134	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	٤
	135	Alcala Del Jucar	ES	3	< RL	< RL		< RL	< RL	< RL	2
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	11
Ebro	137	Garona Arriba	ES								
	138	Garona Abajo	ES								
	139	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	140	Zaragoza-Rio	ES								
	141	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	11
	144	Garcia	ES								
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Po	153	Casale Monferrato	IT								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table S29: Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2019 surface water (Bq l ⁻¹) residual-β

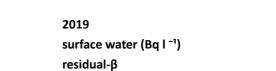
Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES						Δ		
	155	Cabo de San Antonio	ES						Δ		
	156	Puerto de Palma	ES						Δ		
	157	Puerto de Tarragona	ES						Δ		
	158	Cabo de Creus	ES						Δ		
	159	Santa Teresa Gallura	п								
	160	Olbia	п								
	161	Maratea	п								
	162	Rotondella	п								
	163	Xwejni	мт								
	164	Lapsi	мт								
	165	Wied Ghammieq	мт								
	166	Polis	СҮ								
	167	Limassol	СҮ								
	168	Vasilikos	СҮ								
	169	Larnaca	сү								
	170	Paralimni	СҮ								
Maritsa	170	Kostenec	BG								
Waritsa	171	Plovdiv	BG								
	172	Mirovo	BG								
	173	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	25	< RL	< RL	< RL	< RL	< RL	< RL	9
	177	Dravograd	SI								
Sava	178	Krsko	SI								
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185	Mindszent	HU								
	186	Tiszasziget I	HU								
	187	Tiszasziget II	HU								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S30:

YEAR

SAMPLE TYPE


NUCLIDE CATEGORY

Time averages

1

:

:

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE								
	189	Jochenstein	AT	15	< RL	< RL	< RL	< RL	< RL	< RL	6
	190	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Baja	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	363	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	326	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	364	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	361	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR								
Olt	225	Miercurea Ciuc	RO	365	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S31: Time averages

YEAR : SAMPLE TYPE : NUCLIDE CATEGORY :

2020 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE								
Gulf Of Bothnia	2	Forsmark (F135)	SE								
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE								
Kemijoki	5	Kemi	FI								
Oulujoki	6	Oulu	FI	-							
Kokemaenjoki	7	Pori	FI	-							
Kymijoki	8	Kotka	FI								
Narva	9	Narva	EE								
Gulf Of Finland	10	Gulf Of Finland, N8	EE	-							
	11	Gulf Of Finland, EE17	EE								
	12	Gulf Of Finland, PE	EE								
	13	Gulf Of Finland, PW	EE								
Daugava	14	Daugavpils	LV	-							
	15	Riga	LV								
	16	Drūkšiai Lake	LT								
Neman	17	Neman above Druskininkai	LT	-							
	18	Kauno Marios	LT								
	19	Neris River Near Buivydžiai	LT								
	20	Skirvytė River	LT								
	21	Akmena-Dane River	LT								
	22	Plateliai Lake	LT								
	23	Šešupė River Transb (Russia)	LT								
	24	Šventoji River Mouth	LT								
Vistula	25	Krakow Tyniec	PL	-							
	26	Annopol	PL								
	27	Warsaw	PL								
	28	Plock	PL								
	29	Kiezmark	PL								
Baltic Sea	30	Baltic Sea LT64	LT								
	31	Baltic Sea LT 20	LT								
	32	Baltic Sea LT6	LT								
	33	Curonian Lagoon LT10	LT								
	34	Oskarshamn (S36)	SE								
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	36 37	Baltic Sea P-1 Baltic Sea P-39	PL								
			PL								
	38	Baltic Sea P-116									
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S32: Time averages

YEAR	:	2020
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	Μ
Baltic Sea	41	Moen	DK								
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK								
Oder	46	Bohumin	CZ								
	47	Chalupki	PL								
	48	Wroclaw	PL								
	49	Krajnik	PL								
The Great Belt	50	Halskov Rev	DK								
	51	Asnaes Rev	DK								
The Sound	52	The Sound S	DK								
	53	The Sound N(A)	DK								
Kattegat	54	Kattegat-413	DK								
	55	Ringhals (35)	SE								
Skagerrak	56	Fjaellbacka	SE								
Elbe	57	Hrensko	cz								
	58	Geesthacht	DE								
	59	Wedel	DE								
	60	Cuxhaven	DE								
Rhine	61	Weil am Rhein	DE	<u> </u>							
	62	Breisach am Rhein	DE								
	63	Lauterbourg	FR								
	64	Worms	DE								
	65	Koblenz	DE								
	66	Trebur	DE								
Moselle	67	Cattenom (Aval)	FR								
mosene	68	Schengen	LU								
	69	Wincheringen	DE								
Mauraa	70	Chooz (Givet)	FR								
Meuse				50							
	71	Heer-Agimont	BE	52	< RL						
	72	Andenne	BE	52		< RL					
	73	Huy	BE	52	< RL						
	74	Ampsin	BE								
	75	Monsin	BE								
	76	Lixhe	BE	52		< RL					
	77	Eijsden	NL	14		< RL	1				
Molse Nete	78	Geel	BE	52	< RL	1					
Scheldt	79	Doel	BE	30	< RL	< RL		< RL	< RL	< RL	

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S33: Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2020 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from coast	NL								
	81	Noordwijk, 70 km from coast	NL	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR								
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR								
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES						Δ		
	99	Brest	FR								
	100	Cabo Silleiro	ES	1			1.2E+00		1.2E+00	1.2E+00	8
	101	Isla Cristina	ES						Δ		
	102	Puerto de Cadiz	ES						Δ		
	103	Estrecho de Gibraltar	ES						Δ		
	104	Puerto De Las Palmas	ES						Δ		
Mino	105	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	106	Orense	ES	3	< RL		< RL	< RL	< RL	< RL	10
	107	Caldelas De Tuy	ES	3	< RL		< RL	< RL	< RL	< RL	10
Duero	108	Garray	ES	3	< RL		< RL	< RL	< RL	< RL	2
	109	Quintanilla	ES	3	< RL		< RL	< RL	< RL	< RL	7
	110	Villalcampo	ES	3	< RL		< RL	< RL	< RL	< RL	2
Tagus	111	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	112	Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	3
	113	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	114	Zorita Abajo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	ç
	115	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	116	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	117	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S34:

Time averages

YEAR	:	2020
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	9	< RL		< RL	< RL	< RL	< RL	7
	119	Embalse de Torrejon	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
	120	Embalse de Alcantara	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	121	Vila Velha de Rodao	РТ								
	122	Valada Do Ribatejo	РТ								
Guadiana	123	Balbuena	ES	1		< RL			< RL	< RL	e
	124	Orellana	ES	1		< RL			< RL	< RL	e
	125	Puente Palmas	ES	2	< RL				< RL	< RL	1
	126	San Lucar	ES								
Guadalquivir	127	Mengibar	ES	4		< RL	10				
	128	Andujar Arriba	ES	2			< RL	< RL	< RL	< RL	7
	129	Andujar Abajo	ES	1		< RL			< RL	< RL	4
	130	El Carpio	ES	2			< RL	< RL	< RL	< RL	7
	131	Posadas	ES	3		< RL	4				
	132	Sevilla Rio	ES								
lucar	133	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	134	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	135	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	Ę
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
Ebro	137	Garona Arriba	ES								
	138	Garona Abajo	ES								
	139	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	140	Zaragoza-Rio	ES								
	141	Sastago	ES	3	< RL		< RL	< RL	< RL	< RL	10
	142	Ribarroja	ES	10	< RL	< RL	< RL	< RL	< RL	< RL	12
	143	Asco Abajo	ES	21	< RL	< RL	< RL	< RL	< RL	< RL	ξ
	144	Garcia	ES								
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	п								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

Table S35: Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2020 surface water (Bq l ⁻¹) residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES						Δ		
Jea	155	Cabo de San Antonio	ES						Δ		
	156	Puerto de Palma	ES						Δ		
	157	Puerto de Tarragona	ES	1			1.2E+00		1.2E+00	1.2E+00	9
	158	Cabo de Creus	ES						Δ		
	159	Santa Teresa Gallura	п								
	160	Olbia	п								
	161	Maratea	п								
	162	Rotondella	п								
	163	Xwejni	мт								
	164	Lapsi	мт								
	165	Wied Ghammieq	мт								
	166	Polis	сү								
	167	Limassol	сү								
	168	Vasilikos	СҮ								
	169	Larnaca	СҮ								
	170	Paralimni	СҮ								
Maritsa	171	Kostenec	BG								
maintsa	172	Plovdiv	BG								
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	24	< RL	< RL	< RL	< RL	< RL	< RL	11
	177	Dravograd	SI								
Sava	178	Krsko	SI								
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185	Mindszent	HU								
	186	Tiszasziget I	HU								
	187	Tiszasziget II	HU								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table S36: Time averages

YEAR 2020 1 SAMPLE TYPE : surface water (Bq I⁻¹) NUCLIDE CATEGORY : residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE								
	189	Jochenstein	AT	15	< RL	< RL	< RL	< RL	< RL	< RL	
	190	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Ваја	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	366	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	366	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	364	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	351	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	286	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	366	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	265	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	349	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR								
Olt	225	Miercurea Ciuc	RO	366	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S37: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE	2		< RL	< RL		< RL	< RL	9
Gulf Of Bothnia	2	Forsmark (F135)	SE	1				< RL	< RL	< RL	10
	3	Bottenhavet (C14)	SE	1				< RL	< RL	< RL	10
	4	Bottenviken (A5)	SE	1				< RL	< RL	< RL	10
Kemijoki	5	Kemi	FI	2		< RL		< RL	< RL	< RL	5
Oulujoki	6	Oulu	FI	2		< RL		< RL	< RL	< RL	10
Kokemaenjoki	7	Pori	FI	2		< RL		< RL	< RL	< RL	5
Kymijoki	8	Kotka	FI	2		< RL		< RL	< RL	< RL	5
Narva	9	Narva	EE	4		< RL	4				
Gulf Of Finland	10	Gulf Of Finland, N8	EE	1			< RL		< RL	< RL	8
	11	Gulf Of Finland, EE17	EE	1			< RL		< RL	< RL	8
	12	Gulf Of Finland, PE	EE	1			< RL		< RL	< RL	8
	13	Gulf Of Finland, PW	EE	1			< RL		< RL	< RL	8
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT	4		< RL	5				
Neman	17	Neman above Druskininkai	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	18	Kauno Marios	LT	6		< RL	8				
	19	Neris River Near Buivydžiai	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	20	Skirvytė River	LT	4	< RL	< RL		< RL	< RL	< RL	5
	21	Akmena-Danė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	22	Plateliai Lake	LT	2		< RL	< RL		< RL	< RL	4
	23	Šešupė River Transb (Russia)	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	24	Šventoji River Mouth	LT	4	< RL	< RL		< RL	< RL	< RL	5
Vistula	25	Krakow Tyniec	PL	2		< RL	< RL		< RL	< RL	8
	26	Annopol	PL	2		< RL	< RL		< RL	< RL	8
	27	Warsaw	PL								
	28	Plock	PL	2		< RL	< RL		< RL	< RL	8
	29	Kiezmark	PL	2		< RL	< RL		< RL	< RL	4
Baltic Sea	30	Baltic Sea LT64	LT								
	31	Baltic Sea LT 20	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	32	Baltic Sea LT6	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	33	Curonian Lagoon LT10	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	34	Oskarshamn (S36)	SE	1			< RL		< RL	< RL	9
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S38:

Time averages

YEAR	:	2015
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Baltic Sea	41	Moen	DK								
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK								
Oder	46	Bohumin	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	47	Chalupki	PL	2		< RL	< RL		< RL	< RL	8
	48	Wroclaw	PL								
	49	Krajnik	PL	2		< RL	< RL		< RL	< RL	8
The Great Belt	50	Halskov Rev	DK								
	51	Asnaes Rev	DK								
The Sound	52	The Sound S	DK								
	53	The Sound N(A)	DK								
Kattegat	54	Kattegat-413	DK								
	55	Ringhals (35)	SE	2		< RL	< RL		< RL	< RL	6
Skagerrak	56	Fjaellbacka	SE	2		< RL	< RL		< RL	< RL	9
Elbe	57	Hrensko	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	58	Geesthacht	DE	72	< RL	< RL	< RL	< RL	< RL	< RL	4
	59	Wedel	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	5
	60	Cuxhaven	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	10
Rhine	61	Weil am Rhein	DE	27	< RL	< RL	< RL	< RL	< RL	< RL	4
	62	Breisach am Rhein	DE	13	< RL	< RL	< RL	< RL	< RL	< RL	1
	63	Lauterbourg	FR								
	64	Worms	DE	13	< RL	< RL	< RL	< RL	< RL	< RL	3
	65	Koblenz	DE	26	< RL	< RL	< RL	< RL	< RL	< RL	3
	66	Trebur	DE	16	< RL	< RL	< RL	< RL	< RL	< RL	2
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU	40	< RL	< RL	< RL	< RL	< RL	< RL	3
	69	Wincheringen	DE	13	< RL	< RL	< RL	< RL	< RL	< RL	2
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	10
	72	Andenne	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	4
	73	Huy	BE	25	< RL	< RL	< RL	< RL	< RL	< RL	4
	74	Ampsin	BE								
	75	Monsin	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	12
	76	Lixhe	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	2
	77	Eijsden	NL								-
Molse Nete	78	Geel	BE								
Scheldt	79	Doel	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	5

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

80 81 82 83 84 85 86 86 87 88 88	Terschelling, 100 km from coast Noordwijk, 70 km from coast Noordwijk, 10 km from coast Gravelines (EDF) Nogent sur Seine Le Vesinet Paluel Penly	NL NL FR FR FR FR								
82 83 84 85 86 87 88	Noordwijk, 70 km from coast Noordwijk, 10 km from coast Gravelines (EDF) Nogent sur Seine Le Vesinet Paluel Penly	NL FR FR FR								
83 84 85 86 87 88	Gravelines (EDF) Nogent sur Seine Le Vesinet Paluel Penly	FR FR FR								
84 85 86 87 88	Nogent sur Seine Le Vesinet Paluel Penly	FR FR								
85 86 87 88	Le Vesinet Paluel Penly	FR								
86 87 88	Paluel Penly									
87 88	Penly	FR								
88	-									
	lobourg	FR								
89	Jobourg	FR								
	La Hague-Jardeheu	FR								
90	Flamanville	FR								
91	Belleville sur Loire	FR								
92	Dampierre en Burly	FR								
93	Saint Laurent des Eaux	FR								
94	Chinon (Candes-Aval)	FR								
95	Angers (EDF)	FR								
96	Golfech - St. Romain le Noble	FR								
97	Arcachon	FR								
98	Cabo Ajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	8
99	Brest	FR								
100	Cabo Silleiro	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	8
101	Isla Cristina	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	3
102	Puerto de Cadiz	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	8
103	Estrecho de Gibraltar	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	g
104	Puerto De Las Palmas	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	9
105	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
106	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
107	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
108	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
109	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
110	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
111	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
112	Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	7
113	-	ES	11	< RL	< RL	< RL	< RL	< RL	< RL	11
114		ES	3		< RL	< RL	< RL	< RL	< RL	ç
115		ES	4	< RL	< RL	< RL	< RL			12
	-									g
										g
	92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	92Dampierre en Burly93Saint Laurent des Eaux94Chinon (Candes-Aval)95Angers (EDF)96Golfech - St. Romain le Noble97Arcachon98Cabo Ajo99Brest100Cabo Silleiro101Isla Cristina102Puerto de Cadiz103Estrecho de Gibraltar104Puerto De Las Palmas105Lugo106Orense107Caldelas De Tuy108Garray109Quintanilla110Villalcampo111Trillo Atriba112Trillo Abajo113Zorita Atriba114Zorita Abajo115Aranjuez116Toledo	92Dampierre en BurlyFR93Saint Laurent des EauxFR94Chinon (Candes-Aval)FR95Angers (EDF)FR96Golfech - St. Romain le NobleFR97ArcachonFR98Cabo AjoES99BrestFR100Cabo SilleiroES101Isla CristinaES102Puerto de CadizES103Estrecho de GibraltarES104Puerto De Las PalmasES105LugoES106OrenseES107Caldelas De TuyES108GarrayES110VillalcampoES111Trillo ArribaES112Trillo AbajoES113Zorita AbajoES114Zorita AbajoES115AranjuezES116ToledoES	92Dampierre en BurlyFR93Saint Laurent des EauxFR94Chinon (Candes-Aval)FR95Angers (EDF)FR96Golfech - St. Romain le NobleFR97ArcachonFR98Cabo AjoES99BrestFR100Cabo SilleiroES101Isla CristinaES102Puerto de CadizES103Estrecho de GibraltarES104Puerto De Las PalmasES105LugoES106OrenseES107Caldelas De TuyES108GarrayES110VillalcampoES111Trillo ArribaES113Zorita ArribaES114Zorita AbajoES115AranjuezES116ToledoES	92Dampierre en BurlyFR93Saint Laurent des EauxFR94Chinon (Candes-Aval)FR95Angers (EDF)FR96Golfech - St. Romain le NobleFR97ArcachonFR98Cabo AjoES1399BrestFR100Cabo SilleiroES8101Isla CristinaES8102Puerto de CadizES8103Estrecho de GibraltarES8104Puerto De Las PalmasES4105LugoES4106OrenseES4107Caldelas De TuyES4108GarrayES4109QuintanillaES4110VillalcampoES13111Trillo ArribaES3113Zorita ArribaES3115AranjuezES4116ToledoES4	92Dampierre en BurlyFR93Saint Laurent des EauxFR94Chinon (Candes-Aval)FR95Angers (EDF)FR96Golfech - St. Romain le NobleFR97ArcachonFR98Cabo AjoES1399BrestFR100Cabo SilleiroES8111Isla CristinaES8102Puerto de CadizES8103Estrecho de GibraltarES8104Puerto De Las PalmasES4105LugoES4106OrenseES4107Caldelas De TuyES4108GarrayES4109QuintanillaES4110VillalcampoES13111Trillo AbajoES13113Zorita ArribaES3115AranjuezES4116ToledoES4117CaldelasES3	92Dampierre en Burly Saint Laurent des Eaux P4FR FRFR FRFRFR94Chinon (Candes-Aval) FRFRFRFRFR95Angers (EDF)FRTTT96Golfech - St. Romain le NobleFRTSS97ArcachonFRTSSS98Cabo AjoES13S <rl< td="">SS99BrestFRTSSSS100Cabo SilleiroES8S<rl< td="">S<rl< td="">S101Isla CristinaES8S<rl< td="">S<rl< td="">S102Puerto de CadizES8S<rl< td="">SS103Estrecho de GibraltarES8S<rl< td="">SS104Puerto De Las PalmasES4S<rl< td="">SS105LugoES4S<rl< td="">SSS106OrenseES4SSSSS105LugoES4SSSSSS106OrenseES4SS<td< td=""><td>92Dampierre en Burly Saint Laurent des Eaux P4FR FR FRFR FRFRFR94Chinon (Candes-Aval) FRFRFRImage: Second Se</td><td>92Dampierre en Burly Saint Laurent des Eaux P4FR FRFR FRFR FRFRFR FRFRFR FR FRFR FR FRFR FR FRFR FR FRFR FR FRFR FR FRFR FR FR FR FRFR FR<</td><td>92Dampierre en BurlyFR FR</td></td<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>	92Dampierre en Burly Saint Laurent des Eaux P4FR FR FRFR FRFRFR94Chinon (Candes-Aval) FRFRFRImage: Second Se	92Dampierre en Burly Saint Laurent des Eaux P4FR FRFR FRFR FRFRFR FRFRFR FR FRFR FR FRFR FR FRFR FR FRFR FR FRFR FR FRFR FR FR FR FRFR FR<	92Dampierre en BurlyFR FR

RL: reporting level for $^{\rm 137}Cs$ In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S40:

Time averages

YEAR	:
SAMPLE TYPE	:
NUCLIDE CATEGORY	:

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	119	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	2
	120	Embalse de Alcantara	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	4
	121	Vila Velha de Rodao	РТ								
	122	Valada Do Ribatejo	РТ								
Guadiana	123	Balbuena	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	124	Orellana	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	125	Puente Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	126	San Lucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
Guadalquivir	127	Mengibar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	128	Andujar Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	129	Andujar Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	6
	130	El Carpio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	131	Posadas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
Jucui	134	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	135	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
Ebro	137	Garona Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	4
	138	Garona Abajo	ES	24	< RL	< RL	< RL	< RL	< RL	< RL	7
	139	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	140	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	141	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	7
	144	Garcia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	IT	5	< RL	< RL	< RL	< RL	< RL	< RL	1

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S41: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	5
	155	Cabo de San Antonio	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	3
	156	Puerto de Palma	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	9
	157	Puerto de Tarragona	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	2
	158	Cabo de Creus	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	11
	159	Santa Teresa Gallura	IT								
	160	Olbia	IT								
	161	Maratea	IT								
	162	Rotondella	ІТ								
	163	Xwejni	мт	4	2.5E+00	1.1E+00	< RL	2.3E+00	1.5E+00	2.5E+00	2
	164	Lapsi	МТ	4	1.9E+00	2.7E+00	1.3E+00	1.6E+00	1.9E+00	2.7E+00	6
	165	Wied Ghammieq	МТ	4	< RL	< RL	2.2E+00	2.3E+00	1.5E+00	2.3E+00	11
	166	Polis	CY								
	167	Limassol	СҮ	1		< RL			< RL	< RL	6
	168	Vasilikos	СҮ	1			< RL		< RL	< RL	7
	169	Larnaca	CY								
	170	Paralimni	CY								
Maritsa	171	Kostenec	BG	1				< RL	< RL	< RL	12
	172	Plovdiv	BG								
	173	Mirovo	BG	1				< RL	< RL	< RL	10
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	26	< RL	< RL	< RL	< RL	< RL	< RL	1
	177	Dravograd	SI	2	< RL		< RL		< RL	< RL	9
Sava	178	Krsko	SI	4	< RL	< RL	< RL	< RL	< RL	< RL	6
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185	Mindszent	HU								
	186	Tiszasziget I	HU	3	< RL	< RL	< RL	< RL	< RL	< RL	1
	187	Tiszasziget II	HU								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S42: Time averages

-. Inne avera

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	189	Jochenstein	AT	17	< RL	< RL	< RL	< RL	< RL	< RL	3
	190	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	:
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	199	Dunafoldvar II	HU	4	< RL	< RL	< RL	< RL	< RL	< RL	
	200	Dunafoldvar I	HU	3	< RL	< RL	< RL	< RL	< RL	< RL	
	201	Paks	HU								
	202	Kalocsa	HU	1	< RL				< RL	< RL	
	203	Gerjen	HU	9	< RL	< RL	< RL	< RL	< RL	< RL	
	204	Baja	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	205	Mohacs	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	206	Drobeta Turnu Severin	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR	4		< RL					
Olt	225	Miercurea Ciuc	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for $^{137}\mbox{Cs}$ In surface water, i.e. 1.0 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S43: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2016 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE	2		< RL	< RL		< RL	< RL	6
Gulf Of Bothnia	2	Forsmark (F135)	SE	1				< RL	< RL	< RL	10
	3	Bottenhavet (C14)	SE	1			< RL		< RL	< RL	9
	4	Bottenviken (A5)	SE	1			< RL		< RL	< RL	9
Kemijoki	5	Kemi	FI	2		< RL		< RL	< RL	< RL	5
Oulujoki	6	Oulu	FI	2		< RL		< RL	< RL	< RL	10
Kokemaenjoki	7	Pori	FI	2		< RL		< RL	< RL	< RL	5
Kymijoki	8	Kotka	FI	2		< RL		< RL	< RL	< RL	10
Narva	9	Narva	EE	4		< RL	8				
Gulf Of Finland	10	Gulf Of Finland, N8	EE	1		< RL			< RL	< RL	6
	11	Gulf Of Finland, EE17	EE	1		< RL			< RL	< RL	6
	12	Gulf Of Finland, PE	EE	1		< RL			< RL	< RL	6
	13	Gulf Of Finland, PW	EE	1		< RL			< RL	< RL	6
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT	4		< RL	8				
Neman	17	Neman above Druskininkai	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	18	Kauno Marios	LT	6		< RL	8				
	19	Neris River Near Buivydžiai	LT	5	< RL	< RL	< RL	< RL	< RL	< RL	5
	20	Skirvytė River	LT	3	< RL		< RL	< RL	< RL	< RL	10
	21	Akmena-Danė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	22	Plateliai Lake	LT	2		< RL	< RL		< RL	< RL	4
	23	Šešupė River Transb (Russia)	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	24	Šventoji River Mouth	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
Vistula	25	Krakow Tyniec	PL								
	26	Annopol	PL								
	27	Warsaw	PL								
	28	Plock	PL								
	29	Kiezmark	PL								
Baltic Sea	30	Baltic Sea LT64	LT	1			< RL		< RL	< RL	8
	31	Baltic Sea LT 20	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	32	Baltic Sea LT6	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	33	Curonian Lagoon LT10	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	34	Oskarshamn (S36)	SE	1				< RL	< RL	< RL	11
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	39 40	Baltic Sea P-110 Svenskehavn	PL DK								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S44:

Time averages

YEAR	:	2016
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	Μ
Baltic Sea	41	Moen	DK								
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK								
Oder	46	Bohumin	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	47	Chalupki	PL								
	48	Wroclaw	PL								
	49	Krajnik	PL								
The Great Belt	50	Halskov Rev	DK								
	51	Asnaes Rev	DK								
The Sound	52	The Sound S	DK								
	53	The Sound N(A)	DK								
Kattegat	54	Kattegat-413	DK								
	55	Ringhals (35)	SE	2		< RL	< RL		< RL	< RL	ł
Skagerrak	56	Fjaellbacka	SE	2		< RL	< RL		< RL	< RL	9
Elbe	57	Hrensko	cz	4	< RL	< RL	< RL		< RL	< RL	
	58	Geesthacht	DE	54	< RL	< RL	< RL	< RL	< RL	< RL	
	59	Wedel	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	1
	60	Cuxhaven	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	:
Rhine	61	Weil am Rhein	DE	24	< RL	< RL	< RL	< RL	< RL	< RL	
	62	Breisach am Rhein	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	:
	63	Lauterbourg	FR								
	64	Worms	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	(
	65	Koblenz	DE	25	< RL	< RL	< RL	< RL	< RL	< RL	:
	66	Trebur	DE	17	< RL	< RL	< RL	< RL	< RL	< RL	-
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU	40	< RL	< RL	< RL	< RL	< RL	< RL	2
	69	Wincheringen	DE	13		< RL	(
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE	24	< RL	< RL	< RL	< RL	< RL	< RL	e
	72	Andenne	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	9
	73	Huy	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	:
	74	Ampsin	BE								
	75	Monsin	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	1
	76	Lixhe	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	
	77	Eijsden	NL		- 112						
Molse Nete	78	Geel	BE								
Scheldt	79	Doel	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	5

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2016 surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from coast	NL								
	81	Noordwijk, 70 km from coast	NL								
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR								
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR								
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	3
	99	Brest	FR								
	100	Cabo Silleiro	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	101	Isla Cristina	ES	4		< RL	10				
	102	Puerto de Cadiz	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	103	Estrecho de Gibraltar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	104	Puerto De Las Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Mino	105	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	106	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	107	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Duero	108	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	109	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	110	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Tagus	111	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	ç
	112	Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	11
	113	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	114	Zorita Abajo	ES	3	< RL	< RL	< RL		< RL	< RL	3
	115	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	116	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	117	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	ç

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S46:

Time averages

YEAR	:
SAMPLE TYPE	:
NUCLIDE CATEGORY	:

2016 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	119	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	3
	120	Embalse de Alcantara	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	12
	121	Vila Velha de Rodao	PT								
	122	Valada Do Ribatejo	PT								
Guadiana	123	Balbuena	ES	3	< RL	< RL	< RL		< RL	< RL	9
	124	Orellana	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	125	Puente Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	126	San Lucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
Guadalquivir	127	Mengibar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	128	Andujar Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	129	Andujar Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	130	El Carpio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	131	Posadas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	134	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	135	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
Ebro	137	Garona Arriba	ES	14	< RL	< RL	< RL	< RL	< RL	< RL	6
	138	Garona Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	6
	139	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	140	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	141	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	8
	144	Garcia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	п	4	< RL	< RL	< RL	< RL	< RL	< RL	4

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S47: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2016 surface water (Bq I ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
Jea	155	Cabo de San Antonio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	156	Puerto de Palma	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	157	Puerto de Tarragona	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	158	Cabo de Creus	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	10
	159	Santa Teresa Gallura	IT								
	160	Olbia	ІТ								
	161	Maratea	IT								
	162	Rotondella	ІТ								
	163	Xwejni	мт	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	164	Lapsi	мт	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	165	Wied Ghammieq	мт	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	166	Polis	CY								
	167	Limassol	CY								
	168	Vasilikos	CY								
	169	Larnaca	CY								
	170	Paralimni	CY								
Maritsa	171	Kostenec	BG	1		< RL	< RL		< RL	< RL	7
	172	Plovdiv	BG								
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	16	< RL	< RL	< RL	< RL	< RL	< RL	2
	177	Dravograd	SI	2	< RL		< RL		< RL	< RL	8
Sava	178	Krsko	SI	4	< RL	< RL	< RL	< RL	< RL	< RL	3
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185	Mindszent	HU								
	186	Tiszasziget I	HU								
	187	Tiszasziget II	HU								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S48:

Time averages

:

:

:

YEAR	
SAMPLE TYPE	
NUCLIDE CATEGORY	

2016 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	(
	189	Jochenstein	AT	17	< RL	< RL	< RL	< RL	< RL	< RL	:
	190	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Baja	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR	4	< RL	< RL	< RL	< RL	< RL	< RL	
Olt	225	Miercurea Ciuc	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S49: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2017 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE	2		< RL		< RL	< RL	< RL	10
Gulf Of Bothnia	2	Forsmark (F135)	SE	1			< RL		< RL	< RL	9
	3	Bottenhavet (C14)	SE	1				< RL	< RL	< RL	10
	4	Bottenviken (A5)	SE	1				< RL	< RL	< RL	10
Kemijoki	5	Kemi	FI	2		< RL		< RL	< RL	< RL	10
Oulujoki	6	Oulu	FI	2		< RL		< RL	< RL	< RL	5
Kokemaenjoki	7	Pori	FI	2		< RL		< RL	< RL	< RL	10
Kymijoki	8	Kotka	FI	2		< RL		< RL	< RL	< RL	5
Narva	9	Narva	EE	4	< RL	< RL	< RL	< RL	< RL	< RL	3
Gulf Of Finland	10	Gulf Of Finland, N8	EE	1			< RL		< RL	< RL	8
	11	Gulf Of Finland, EE17	EE	1			< RL		< RL	< RL	8
	12	Gulf Of Finland, PE	EE	1			< RL		< RL	< RL	8
	13	Gulf Of Finland, PW	EE	1			< RL		< RL	< RL	8
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT	4		< RL	< RL		< RL	< RL	8
Neman	17	Neman above Druskininkai	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	18	Kauno Marios	LT	6		< RL	9				
	19	Neris River Near Buivydžiai	LT	3	< RL	< RL	< RL		< RL	< RL	8
	20	Skirvytė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	21	Akmena-Danė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	22	Plateliai Lake	LT	2		< RL	< RL		< RL	< RL	9
	23	Šešupė River Transb (Russia)	LT								
	24	Šventoji River Mouth	LT	3	< RL	< RL	< RL		< RL	< RL	8
Vistula	25	Krakow Tyniec	PL	2		< RL		< RL	< RL	< RL	6
	26	Annopol	PL	2		< RL		< RL	< RL	< RL	10
	27	Warsaw	PL								
	28	Plock	PL	2		< RL	< RL		< RL	< RL	9
	29	Kiezmark	PL	2		< RL	< RL		< RL	< RL	9
Baltic Sea	30	Baltic Sea LT64	LT	1			< RL		< RL	< RL	8
	31	Baltic Sea LT 20	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	32	Baltic Sea LT6	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	33	Curonian Lagoon LT10	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	34	Oskarshamn (S36)	SE	1				< RL	< RL	< RL	12
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S50:

Time averages

YEAR	:	2017
SAMPLE TYPE	:	surface water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Baltic Sea	41	Moen	DK								
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK								
Oder	46	Bohumin	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	47	Chalupki	PL	2		< RL		< RL	< RL	< RL	6
	48	Wroclaw	PL								
	49	Krajnik	PL	2		< RL		< RL	< RL	< RL	10
The Great Belt	50	Halskov Rev	DK								
	51	Asnaes Rev	DK								
The Sound	52	The Sound S	DK								
	53	The Sound N(A)	DK								
Kattegat	54	Kattegat-413	DK								
	55	Ringhals (35)	SE	2		< RL	< RL		< RL	< RL	4
Skagerrak	56	Fjaellbacka	SE	2		< RL	< RL		< RL	< RL	9
Elbe	57	Hrensko	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	58	Geesthacht	DE	51	< RL	< RL	< RL	< RL	< RL	< RL	6
	59	Wedel	DE	7		< RL	5				
	60	Cuxhaven	DE	6	< RL	< RL	< RL	< RL	< RL	< RL	6
Rhine	61	Weil am Rhein	DE	25	< RL	< RL	< RL	< RL	< RL	< RL	10
	62	Breisach am Rhein	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	6
	63	Lauterbourg	FR								
	64	Worms	DE	13	< RL	< RL	< RL	< RL	< RL	< RL	3
	65	Koblenz	DE	20	< RL	< RL	< RL	< RL	< RL	< RL	12
	66	Trebur	DE	16	< RL	< RL	< RL	< RL	< RL	< RL	12
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU	40	< RL	< RL	< RL	< RL	< RL	< RL	2
	69	Wincheringen	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	12
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	10
	72	Andenne	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	11
	73	Huy	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	g
	74	Ampsin	BE								
	75	Monsin	BE	1	< RL				< RL	< RL	1
	76	Lixhe	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	8
	77	Eijsden	NL								
Molse Nete	78	Geel	BE								
Scheldt	79	Doel	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	10

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S51: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2017 surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from	NL								
	81	coast Noordwijk, 70 km from coast	NL								
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR	1			< RL	< RL	< RL	< RL	9
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR								
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	4
	99	Brest	FR								
	100	Cabo Silleiro	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	101	Isla Cristina	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	102	Puerto de Cadiz	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	103	Estrecho de Gibraltar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	104	Puerto De Las Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Mino	105	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	106	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	107	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Duero	108	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	109	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	110	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Tagus	111	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	112	Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	10
	113	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
	114	Zorita Abajo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	115	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	116	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	117	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S52:

Time averages

YEAR	:
SAMPLE TYPE	:
NUCLIDE CATEGORY	:

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	5
	119	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	11
	120	Embalse de Alcantara	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	6
	121	Vila Velha de Rodao	PT								
	122	Valada Do Ribatejo	PT	12	< RL	< RL	< RL	< RL	< RL	< RL	5
Guadiana	123	Balbuena	ES	3	< RL		< RL	< RL	< RL	< RL	9
	124	Orellana	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	125	Puente Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	126	San Lucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
Guadalquivir	127	Mengibar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	128	Andujar Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	129	Andujar Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	130	El Carpio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	131	Posadas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	134	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	135	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	5
Ebro	137	Garona Arriba	ES	14	< RL	< RL	< RL	< RL	< RL	< RL	6
	138	Garona Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	2
	139	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	140	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	141	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	12
	144	Garcia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	ІТ								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S53: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2017 surface water (Bq I ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Jea	155	Cabo de San Antonio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	156	Puerto de Palma	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	157	Puerto de Tarragona	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	158	Cabo de Creus	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	5
	159	Santa Teresa Gallura	ІТ								
	160	Olbia	ІТ								
	161	Maratea	ІТ								
	162	Rotondella	ІТ								
	163	Xwejni	мт	3	< RL	< RL	< RL	< RL	< RL	< RL	1
	164	Lapsi	мт	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	165	Wied Ghammieq	мт	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	166	Polis	CY								
	167	Limassol	CY								
	168	Vasilikos	CY								
	169	Larnaca	CY								
	170	Paralimni	CY								
Maritsa	171	Kostenec	BG	1		< RL	< RL		< RL	< RL	6
Multisu	172	Plovdiv	BG	,							Ū
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	25	< RL	< RL	< RL	< RL	< RL	< RL	1
	177	Dravograd	SI	2	< RL		< RL		< RL	< RL	3
Sava	178	Krsko	SI	1		< RL			< RL	< RL	5
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185	Mindszent	HU								
	186	Tiszasziget I	HU								
	187	Tiszasziget II	HU								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S54:

Time averages

:

:

:

YEAR	
SAMPLE TYPE	
NUCLIDE CATEGORY	

2017 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	1:
	189	Jochenstein	AT	17	< RL	< RL	< RL	< RL	< RL	< RL	ä
	190	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Baja	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR	4	< RL	< RL	< RL	< RL	< RL	< RL	
Olt	225	Miercurea Ciuc	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S55: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE	2		< RL	< RL		< RL	< RL	9
Gulf Of Bothnia	2	Forsmark (F135)	SE	1			< RL		< RL	< RL	9
	3	Bottenhavet (C14)	SE	1			< RL		< RL	< RL	9
	4	Bottenviken (A5)	SE	1			< RL		< RL	< RL	9
Kemijoki	5	Kemi	FI	1		< RL			< RL	< RL	5
Oulujoki	6	Oulu	FI	1		< RL			< RL	< RL	5
Kokemaenjoki	7	Pori	FI	1		< RL			< RL	< RL	6
Kymijoki	8	Kotka	FI	1		< RL			< RL	< RL	5
Narva	9	Narva	EE	4	< RL	< RL	< RL	< RL	< RL	< RL	3
Gulf Of Finland	10	Gulf Of Finland, N8	EE	1			< RL		< RL	< RL	8
	11	Gulf Of Finland, EE17	EE	1			< RL		< RL	< RL	8
	12	Gulf Of Finland, PE	EE	1			< RL		< RL	< RL	8
	13	Gulf Of Finland, PW	EE	1			< RL		< RL	< RL	8
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT	4		< RL	8				
Neman	17	Neman above Druskininkai	LT	4	< RL	< RL	< RL		< RL	< RL	5
	18	Kauno Marios	LT	6		< RL	4				
	19	Neris River Near Buivydžiai	LT	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	20	Skirvytė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	21	Akmena-Danė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	22	Plateliai Lake	LT	1			< RL		< RL	< RL	8
	23	Šešupė River Transb (Russia)	LT								
	24	Šventoji River Mouth	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
Vistula	25	Krakow Tyniec	PL	2		< RL		< RL	< RL	< RL	5
	26	Annopol	PL	2		< RL		< RL	< RL	< RL	10
	27	Warsaw	PL								
	28	Plock	PL	2		< RL	< RL		< RL	< RL	4
	29	Kiezmark	PL	2		< RL	< RL		< RL	< RL	9
Baltic Sea	30	Baltic Sea LT64	LT	1			< RL		< RL	< RL	9
	31	Baltic Sea LT 20	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	32	Baltic Sea LT6	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	33	Curonian Lagoon LT10	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	34	Oskarshamn (S36)	SE	1			< RL		< RL	< RL	9
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S56:

Time averages

YEAR	:	2018
SAMPLE TYPE	:	surfac
NUCLIDE CATEGORY	:	caesiu

surface water (Bq I⁻¹)

	'
caesium-137 (¹³⁷ Cs)	

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Baltic Sea	41	Moen	DK	1		< RL			< RL	< RL	
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK	1		< RL			< RL	< RL	
Oder	46	Bohumin	CZ								
	47	Chalupki	PL	2		< RL		< RL	< RL	< RL	1
	48	Wroclaw	PL								
	49	Krajnik	PL	2		< RL		< RL	< RL	< RL	
The Great Belt	50	Halskov Rev	DK	2		< RL			< RL	< RL	
	51	Asnaes Rev	DK	1		< RL			< RL	< RL	
The Sound	52	The Sound S	DK	1		< RL			< RL	< RL	
	53	The Sound N(A)	DK	1		< RL			< RL	< RL	
Kattegat	54	Kattegat-413	DK	1		< RL			< RL	< RL	
	55	Ringhals (35)	SE	2		< RL		< RL	< RL	< RL	
Skagerrak	56	Fjaellbacka	SE	2		< RL	< RL		< RL	< RL	
Elbe	57	Hrensko	CZ								
	58	Geesthacht	DE	56	< RL	< RL	< RL	< RL	< RL	< RL	
	59	Wedel	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	
	60	Cuxhaven	DE								
Rhine	61	Weil am Rhein	DE	26	< RL	< RL	< RL	< RL	< RL	< RL	
	62	Breisach am Rhein	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	
	63	Lauterbourg	FR								
	64	Worms	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	
	65	Koblenz	DE	24	< RL	< RL	< RL	< RL	< RL	< RL	
	66	Trebur	DE	14	< RL	< RL	< RL	< RL	< RL	< RL	
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU	43	< RL	< RL	< RL	< RL	< RL	< RL	1
	69	Wincheringen	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	
	72	Andenne	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	
	73	Huy	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	1
	74	Ampsin	BE								
	75	Monsin	BE								
	76	Lixhe	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	
	77	Eijsden	NL								
Molse Nete	78	Geel	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	
Scheldt	79	Doel	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	1

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

:

:

:

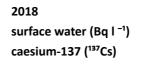
YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from coast	NL								
	81	Noordwijk, 70 km from coast	NL								
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR								
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR	1	< RL	< RL			< RL	< RL	3
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	Э
	99	Brest	FR								
	100	Cabo Silleiro	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	101	Isla Cristina	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	102	Puerto de Cadiz	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	103	Estrecho de Gibraltar	ES	3	< RL	< RL	< RL		< RL	< RL	7
	104	Puerto De Las Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	З
Mino	105	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	106	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	107	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
Duero	108	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	109	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	110	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Tagus	111	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	112	Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	6
	113	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
	114	Zorita Abajo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	115	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	116	Toledo	ES	4		< RL	4				
											-

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S58:


Time averages

:

:

:

YEAR	
SAMPLE TYPE	
NUCLIDE CATEGORY	

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	5
	119	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	12
	120	Embalse de Alcantara	ES	15	< RL	< RL	< RL	< RL	< RL	< RL	10
	121	Vila Velha de Rodao	PT								
	122	Valada Do Ribatejo	PT								
Guadiana	123	Balbuena	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	124	Orellana	ES	2		< RL		< RL	< RL	< RL	12
	125	Puente Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	126	San Lucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
Guadalquivir	127	Mengibar	ES	3	< RL	< RL	< RL		< RL	< RL	1
	128	Andujar Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	129	Andujar Abajo	ES	10	< RL	< RL	< RL	< RL	< RL	< RL	2
	130	El Carpio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	131	Posadas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	132	Sevilla Rio	ES								
lucar	133	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	134	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	135	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	136	Cofrentes Abajo	ES	11	< RL	< RL	< RL	< RL	< RL	< RL	9
Ebro	137	Garona Arriba	ES	9	< RL	< RL	< RL		< RL	< RL	8
	138	Garona Abajo	ES	23	< RL	< RL	< RL	< RL	< RL	< RL	9
	139	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	140	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	141	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	5
	144	Garcia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR	1	< RL	< RL			< RL	< RL	3
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	IT								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S59: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 surface water (Bq I ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
Jea	155	Cabo de San Antonio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	156	Puerto de Palma	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	157	Puerto de Tarragona	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	158	Cabo de Creus	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	1
	159	Santa Teresa Gallura	ІТ								
	160	Olbia	ІТ								
	161	Maratea	IT								
	162	Rotondella	ІТ								
	163	Xwejni	мт	5	< RL	< RL	< RL	< RL	< RL	< RL	1
	164	Lapsi	мт	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	165	Wied Ghammieq	мт	3		< RL	11				
	166	Polis	CY								
	167	Limassol	CY								
	168	Vasilikos	CY								
	169	Larnaca	CY								
	170	Paralimni	CY								
Maritsa	171	Kostenec	BG	1			< RL		< RL	< RL	7
	172	Plovdiv	BG								
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	25	< RL	< RL	< RL	< RL	< RL	< RL	10
	177	Dravograd	SI	2	< RL		< RL	< RL	< RL	< RL	2
Sava	178	Krsko	SI	4	< RL	< RL	< RL	< RL	< RL	< RL	9
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185	Mindszent	HU								
	186	Tiszasziget I	HU								
	187	Tiszasziget II	HU								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S60:

Time averages

1

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 surface water (Bq l⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	
	189	Jochenstein	AT	16	< RL	< RL	< RL	< RL	< RL	< RL	1
	190	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Baja	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	219	Cernavoda*	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR	4	< RL	< RL	< RL	< RL	< RL	< RL	
Olt	225	Miercurea Ciuc	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S61: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2019 surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE	2		< RL	< RL		< RL	< RL	9
Gulf Of Bothnia	2	Forsmark (F135)	SE	1			< RL		< RL	< RL	9
	3	Bottenhavet (C14)	SE	1			< RL		< RL	< RL	9
	4	Bottenviken (A5)	SE	1			< RL		< RL	< RL	9
Kemijoki	5	Kemi	FI	1				< RL	< RL	< RL	10
Oulujoki	6	Oulu	FI	1				< RL	< RL	< RL	10
Kokemaenjoki	7	Pori	FI	1				< RL	< RL	< RL	10
Kymijoki	8	Kotka	FI	1				< RL	< RL	< RL	10
Narva	9	Narva	EE	4	< RL	< RL	< RL	< RL	< RL	< RL	3
Gulf Of Finland	10	Gulf Of Finland, N8	EE	1		< RL			< RL	< RL	5
	11	Gulf Of Finland, EE17	EE	1		< RL			< RL	< RL	6
	12	Gulf Of Finland, PE	EE	1		< RL			< RL	< RL	5
	13	Gulf Of Finland, PW	EE	1		< RL			< RL	< RL	5
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT	4		< RL	< RL		< RL	< RL	5
Neman	17	Neman above Druskininkai	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	18	Kauno Marios	LT	6		< RL	8				
	19	Neris River Near Buivydžiai	LT	12	< RL	< RL	< RL	< RL	< RL	< RL	7
	20	Skirvytė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	21	Akmena-Danė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	22	Plateliai Lake	LT	2		< RL	< RL		< RL	< RL	7
	23	Šešupė River Transb (Russia)	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	24	Šventoji River Mouth	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
Vistula	25	Krakow Tyniec	PL	-							
	26	Annopol	PL								
	27	Warsaw	PL								
	28	Plock	PL								
	29	Kiezmark	PL								
Baltic Sea	30	Baltic Sea LT64	LT	1			< RL		< RL	< RL	8
	31	Baltic Sea LT 20	LT	3		< RL	< RL		< RL	< RL	5
	32	Baltic Sea LT6	LT	3		< RL	< RL		< RL	< RL	8
	33	Curonian Lagoon LT10	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	34	Oskarshamn (S36)	SE	1			< RL		< RL	< RL	9
	35	Baltic Sea P-140	PL								5
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								
	40	Sveliskellavli	DK								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

0

Table S62:

Time averages

YEAR	:	2
SAMPLE TYPE	:	s
NUCLIDE CATEGORY	:	c

2019 surface water (Bq l⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Baltic Sea	41	Moen	DK	1		< RL			< RL	< RL	6
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK	1		< RL			< RL	< RL	6
	45	Langeland Baelt	DK	1		< RL			< RL	< RL	6
Oder	46	Bohumin	cz								
	47	Chalupki	PL								
	48	Wroclaw	PL								
	49	Krajnik	PL								
The Great Belt	50	Halskov Rev	DK	1		< RL			< RL	< RL	6
	51	Asnaes Rev	DK	1		< RL			< RL	< RL	6
The Sound	52	The Sound S	DK	1		< RL			< RL	< RL	6
	53	The Sound N(A)	DK	1		< RL			< RL	< RL	6
Kattegat	54	Kattegat-413	DK	1		< RL			< RL	< RL	6
	55	Ringhals (35)	SE	2		< RL		< RL	< RL	< RL	4
Skagerrak	56	Fjaellbacka	SE	2		< RL	< RL		< RL	< RL	4
Elbe	57	Hrensko	CZ								
	58	Geesthacht	DE								
	59	Wedel	DE								
	60	Cuxhaven	DE								
Rhine	61	Weil am Rhein	DE	1	< RL				< RL	< RL	1
	62	Breisach am Rhein	DE								
	63	Lauterbourg	FR								
	64	Worms	DE								
	65	Koblenz	DE								
	66	Trebur	DE								
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU								
	69	Wincheringen	DE								
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	10
	72	Andenne	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	10
	73	Huy	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	10
	74	Ampsin	BE								
	75	Monsin	BE								
	76	Lixhe	BE	2				< RL	< RL	< RL	12
	77	Eijsden	NL								12
Molse Nete	78	Geel	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	4
Scheldt	78	Doel	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	4
Schelut	19		DC	20	> KL						

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

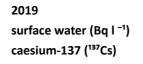
:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2019 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)


Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from coast	NL								
	81	Noordwijk, 70 km from coast	NL								
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR								
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR								
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES	9	< RL	< RL		< RL	< RL	< RL	5
	99	Brest	FR								
	100	Cabo Silleiro	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	101	Isla Cristina	ES	4	< RL		< RL	< RL	< RL	< RL	3
	102	Puerto de Cadiz	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	103	Estrecho de Gibraltar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	104	Puerto De Las Palmas	ES								
Mino	105	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	106	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	107	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
Duero	108	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	109	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	110	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Tagus	111	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	112	Trillo Abajo	ES	14	< RL	< RL	< RL	< RL	< RL	< RL	ç
	113	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	114	Zorita Abajo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	115	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	116	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	ç
	117	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S64:

Time averages

YEAR	:	
SAMPLE TYPE	:	
NUCLIDE CATEGORY	:	

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
	119	Embalse de Torrejon	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	3
	120	Embalse de Alcantara	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	1
	121	Vila Velha de Rodao	PT								
	122	Valada Do Ribatejo	PT								
Guadiana	123	Balbuena	ES	3	< RL	< RL	< RL		< RL	< RL	3
	124	Orellana	ES	3	< RL	< RL	< RL		< RL	< RL	3
	125	Puente Palmas	ES	3	< RL	< RL		< RL	< RL	< RL	10
	126	San Lucar	ES	3	< RL	< RL		< RL	< RL	< RL	3
Guadalquivir	127	Mengibar	ES								
	128	Andujar Arriba	ES								
	129	Andujar Abajo	ES								
	130	El Carpio	ES								
	131	Posadas	ES								
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	134	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	135	Alcala Del Jucar	ES	3	< RL	< RL		< RL	< RL	< RL	11
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
Ebro	137	Garona Arriba	ES								
	138	Garona Abajo	ES								
	139	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	140	Zaragoza-Rio	ES								
	141	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	142	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	143	Asco Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	1
	144	Garcia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	п								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S65: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2019 surface water (Bq I ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Sea	155	Cabo de San Antonio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	156	Puerto de Palma	ES	4	< RL		< RL	< RL	< RL	< RL	8
	157	Puerto de Tarragona	ES	3	< RL	< RL	< RL		< RL	< RL	2
	158	Cabo de Creus	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	8
	159	Santa Teresa Gallura	ІТ								
	160	Olbia	ІТ								
	161	Maratea	IT								
	162	Rotondella	IT								
	163	Xwejni	МТ	8	< RL	< RL	< RL	< RL	< RL	< RL	2
	164	Lapsi	МТ	8	< RL	< RL	< RL	< RL	< RL	< RL	9
	165	Wied Ghammieq	МТ	8	< RL	< RL	< RL	< RL	< RL	< RL	6
	166	Polis	СҮ								
	167	Limassol	СҮ								
	168	Vasilikos	СҮ								
	169	Larnaca	СҮ								
	170	Paralimni	СҮ								
Maritsa	171	Kostenec	BG								
	172	Plovdiv	BG								
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	25	< RL	< RL	< RL	< RL	< RL	< RL	4
	177	Dravograd	SI								
Sava	178	Krsko	SI								
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183 184	Rakamaz Szolnok	ни ни								
	184	Szolnok Mindszent	HU								
	186	Tiszasziget I	HU								
	187	Tiszasziget II	ни								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S66:

Time averages

:

:

:

YEAR	
SAMPLE TYPE	
NUCLIDE CATEGORY	

2019 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	Μ
Danube	188	Vilshofen	DE								
	189	Jochenstein	AT	16	< RL	< RL	< RL	< RL	< RL	< RL	e
	190	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	(
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Baja	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	219	Cernavoda*	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR	4	< RL	< RL		< RL	< RL	< RL	1
Olt	225	Miercurea Ciuc	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	1

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

Table S67: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2020 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Indalsaelven	1	Oestersund-Storsjoen	SE	2		< RL	< RL		< RL	< RL	5
Gulf Of Bothnia	2	Forsmark (F135)	SE	1				< RL	< RL	< RL	10
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE	1			< RL		< RL	< RL	ç
Kemijoki	5	Kemi	FI	1		< RL			< RL	< RL	5
Oulujoki	6	Oulu	FI	1		< RL			< RL	< RL	5
Kokemaenjoki	7	Pori	FI	1		< RL			< RL	< RL	5
Kymijoki	8	Kotka	FI	1		< RL			< RL	< RL	4
Narva	9	Narva	EE	4	< RL	< RL	< RL	< RL	< RL	< RL	3
Gulf Of Finland	10	Gulf Of Finland, N8	EE	1		< RL			< RL	< RL	6
	11	Gulf Of Finland, EE17	EE	1		< RL			< RL	< RL	e
	12	Gulf Of Finland, PE	EE	1		< RL			< RL	< RL	6
	13	Gulf Of Finland, PW	EE	1		< RL			< RL	< RL	e
Daugava	14	Daugavpils	LV								
	15	Riga	LV								
	16	Drūkšiai Lake	LT	4		< RL	5				
Neman	17	Neman above Druskininkai	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	18	Kauno Marios	LT	6		< RL	4				
	19	Neris River Near Buivydžiai	LT	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	20	Skirvytė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	21	Akmena-Danė River	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	22	Plateliai Lake	LT	2		< RL	< RL		< RL	< RL	4
	23	Šešupė River Transb (Russia)	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	24	Šventoji River Mouth	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Vistula	25	Krakow Tyniec	PL								
	26	Annopol	PL								
	27	Warsaw	PL								
	28	Plock	PL								
	29	Kiezmark	PL								
Baltic Sea	30	Baltic Sea LT64	LT	1			< RL		< RL	< RL	٤
	31	Baltic Sea LT 20	LT	3		< RL	8				
	32	Baltic Sea LT6	LT	3		< RL	5				
	33	Curonian Lagoon LT10	LT	3	< RL	< RL	< RL		< RL	< RL	2
	34	Oskarshamn (S36)	SE	1			< RL		< RL	< RL	ç
	35	Baltic Sea P-140	PL								
	36	Baltic Sea P-1	PL								
	37	Baltic Sea P-39	PL								
	38	Baltic Sea P-116	PL								
	39	Baltic Sea P-110	PL								
	40	Svenskehavn	DK								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S68:

Time averages

YEAR	:	2020
SAMPLE TYPE	:	surface water (Bq l ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Baltic Sea	41	Moen	DK	1			< RL		< RL	< RL	9
	42	Gedser Odde	DK								
	43	Luebeck Bay	DE								
	44	Femern Baelt	DK								
	45	Langeland Baelt	DK	1			< RL		< RL	< RL	9
Oder	46	Bohumin	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	47	Chalupki	PL								
	48	Wroclaw	PL								
	49	Krajnik	PL								
The Great Belt	50	Halskov Rev	DK	2			< RL		< RL	< RL	9
	51	Asnaes Rev	DK	1			< RL		< RL	< RL	9
The Sound	52	The Sound S	DK	1			< RL		< RL	< RL	9
	53	The Sound N(A)	DK								
Kattegat	54	Kattegat-413	DK								
	55	Ringhals (35)	SE	2		< RL	< RL		< RL	< RL	6
Skagerrak	56	Fjaellbacka	SE	2		< RL	< RL		< RL	< RL	4
Elbe	57	Hrensko	CZ								
	58	Geesthacht	DE								
	59	Wedel	DE								
	60	Cuxhaven	DE								
Rhine	61	Weil am Rhein	DE								
	62	Breisach am Rhein	DE								
	63	Lauterbourg	FR								
	64	Worms	DE								
	65	Koblenz	DE								
	66	Trebur	DE								
Moselle	67	Cattenom (Aval)	FR								
	68	Schengen	LU	42	< RL	< RL	< RL	< RL	< RL	< RL	9
	69	Wincheringen	DE								
Meuse	70	Chooz (Givet)	FR								
	71	Heer-Agimont	BE	52	< RL	< RL	< RL	< RL	< RL	< RL	7
	72	Andenne	BE	52	< RL	< RL	< RL	< RL	< RL	< RL	9
	73	Huy	BE	52	< RL	< RL	< RL	< RL	< RL	< RL	9
	74	Ampsin	BE								
	75	Monsin	BE								
	76	Lixhe	BE	52	< RL	< RL	< RL	< RL	< RL	< RL	6
	77	Eijsden	NL								
Molse Nete	78	Geel	BE	52	< RL	< RL	< RL	< RL	< RL	< RL	2
Scheldt	79	Doel	BE	52	< RL	< RL	< RL	< RL	< RL	< RL	5

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S69: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2020 surface water (Bq I ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
North Sea	80	Terschelling, 100 km from coast	NL								
	81	Noordwijk, 70 km from coast	NL								
	82	Noordwijk, 10 km from coast	NL								
	83	Gravelines (EDF)	FR								
Seine	84	Nogent sur Seine	FR								
	85	Le Vesinet	FR								
Channel	86	Paluel	FR								
	87	Penly	FR								
	88	Jobourg	FR								
	89	La Hague-Jardeheu	FR								
	90	Flamanville	FR								
Loire	91	Belleville sur Loire	FR								
	92	Dampierre en Burly	FR								
	93	Saint Laurent des Eaux	FR								
	94	Chinon (Candes-Aval)	FR								
	95	Angers (EDF)	FR								
Garonne	96	Golfech - St. Romain le Noble	FR								
Atlantic Ocean	97	Arcachon	FR								
	98	Cabo Ajo	ES	6	< RL		< RL	< RL	< RL	< RL	8
	99	Brest	FR								
	100	Cabo Silleiro	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	101	Isla Cristina	ES	1	< RL				< RL	< RL	1
	102	Puerto de Cadiz	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	103	Estrecho de Gibraltar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	104	Puerto De Las Palmas	ES	2	< RL		< RL		< RL	< RL	1
Mino	105	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	106	Orense	ES	3	< RL		< RL	< RL	< RL	< RL	1
	107	Caldelas De Tuy	ES	3	< RL		< RL	< RL	< RL	< RL	1
Duero	108	Garray	ES	3	< RL		< RL	< RL	< RL	< RL	2
	109	Quintanilla	ES	3	< RL		< RL	< RL	< RL	< RL	2
	110	Villalcampo	ES	3	< RL		< RL	< RL	< RL	< RL	7
Tagus	111	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	112	Trillo Abajo	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	8
	113	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	114	Zorita Abajo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	115	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	116	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	117	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	з

RL: reporting level for $^{\rm 137}Cs$ In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S70: Time averages

YEAR : SAMPLE TYPE : NUCLIDE CATEGORY :

2020 surface water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Tagus	118	Valdecanas	ES	9	< RL		< RL	< RL	< RL	< RL	2
	119	Embalse de Torrejon	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	6
	120	Embalse de Alcantara	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	11
	121	Vila Velha de Rodao	PT								
	122	Valada Do Ribatejo	PT								
Guadiana	123	Balbuena	ES	1		< RL			< RL	< RL	6
	124	Orellana	ES	1		< RL			< RL	< RL	6
	125	Puente Palmas	ES	2	< RL				< RL	< RL	3
	126	San Lucar	ES								
Guadalquivir	127	Mengibar	ES	4		< RL	4				
	128	Andujar Arriba	ES	2			< RL	< RL	< RL	< RL	10
	129	Andujar Abajo	ES	1		< RL			< RL	< RL	4
	130	El Carpio	ES	2			< RL	< RL	< RL	< RL	10
	131	Posadas	ES	3		< RL	4				
	132	Sevilla Rio	ES								
Jucar	133	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	134	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	135	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	136	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	9
Ebro	137	Garona Arriba	ES	-							
	138	Garona Abajo	ES								
	139	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	140	Zaragoza-Rio	ES								
	141	Sastago	ES	3	< RL		< RL	< RL	< RL	< RL	7
	142	Ribarroja	ES	10	< RL	< RL	< RL	< RL	< RL	< RL	8
	143	Asco Abajo	ES	21	< RL	< RL	< RL	< RL	< RL	< RL	2
	144	Garcia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	145	Cherta	ES								
Rhone	146	Creys-Malville (EDF)	FR								
	147	Le Bugey (Loyettes)	FR								
	148	Saint Alban	FR								
	149	Cruas (Aval)	FR								
	150	Tricastin	FR								
	151	Roquemaure (Marcoule)	FR								
	152	Vallabregues	FR								
Ро	153	Casale Monferrato	ІТ								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S71: Time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2020 surface water (Bq I ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	154	Garrucha	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
000	155	Cabo de San Antonio	ES	3	< RL	< RL	< RL		< RL	< RL	6
	156	Puerto de Palma	ES	3	< RL		< RL	< RL	< RL	< RL	10
	157	Puerto de Tarragona	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	158	Cabo de Creus	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	9
	159	Santa Teresa Gallura	п								
	160	Olbia	п								
	161	Maratea	п								
	162	Rotondella	ΙТ								
	163	Xwejni	МТ	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	164	Lapsi	мт	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	165	Wied Ghammieq	мт	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	166	Polis	СҮ								
	167	Limassol	СҮ								
	168	Vasilikos	СҮ								
	169	Larnaca	СҮ								
	170	Paralimni	СҮ								
Maritsa	171	Kostenec	BG								
	172	Plovdiv	BG								
	173	Mirovo	BG								
	174	Harmanli	BG								
	175	Svilengrad	BG								
Drau	176	Schwabegg	AT	25	< RL	< RL	< RL	< RL	< RL	< RL	8
	177	Dravograd	SI								
Sava	178	Krsko	SI								
Tisza	179	Tiszabecs	HU								
	180	Gergelyiugornya	HU								
	181	Zahony	HU								
	182	Tiszabercel	HU								
	183	Rakamaz	HU								
	184	Szolnok	HU								
	185 186	Mindszent Tiszasziget I	HU HU								
	186	Tiszasziget I	HU								
	107	1152d52lyet II	по								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

Table S72: Time averages

1

:

:

YEAR

SAMPLE TYPE NUCLIDE CATEGORY

2020 surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	188	Vilshofen	DE								
	189	Jochenstein	AT	15	< RL	< RL	< RL	< RL	< RL	< RL	i
	190	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	
	191	Rajka	HU								
	192	Szob	HU								
	193	Budapest - North I	HU								
	194	Budapest - North II	HU								
	195	Budapest - Danube	HU								
	196	Budapest - Budafok	HU								
	197	Nagyteteny	HU								
	198	Dunaujvaros	HU								
	199	Dunafoldvar II	HU								
	200	Dunafoldvar I	HU								
	201	Paks	HU								
	202	Kalocsa	HU								
	203	Gerjen	HU								
	204	Baja	HU								
	205	Mohacs	HU								
	206	Drobeta Turnu Severin	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	207	Novo Selo	BG								
	208	Ruse	BG								
	209	Bechet	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	210	Oriahovo	BG								
	211	Baykal	BG								
	212	Nikopol	BG								
	213	Belene	BG								
	214	Zimnicea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	215	Svishtov	BG								
	216	Ruse	BG								
	217	Silistra	BG								
	218	Calarasi	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	219	Cernavoda*	RO	10	< RL	< RL	< RL	< RL	< RL	< RL	
	220	Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	221	Sfantu Gheorge Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	222	Galati	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	223	Lough Neagh	UK								
Sava	224	Zagreb	HR	4	< RL	< RL	< RL	< RL	< RL	< RL	
Olt	225	Miercurea Ciuc	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	

RL: reporting level for $^{137}\mbox{Cs}$ In surface water, i.e. 1.0 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

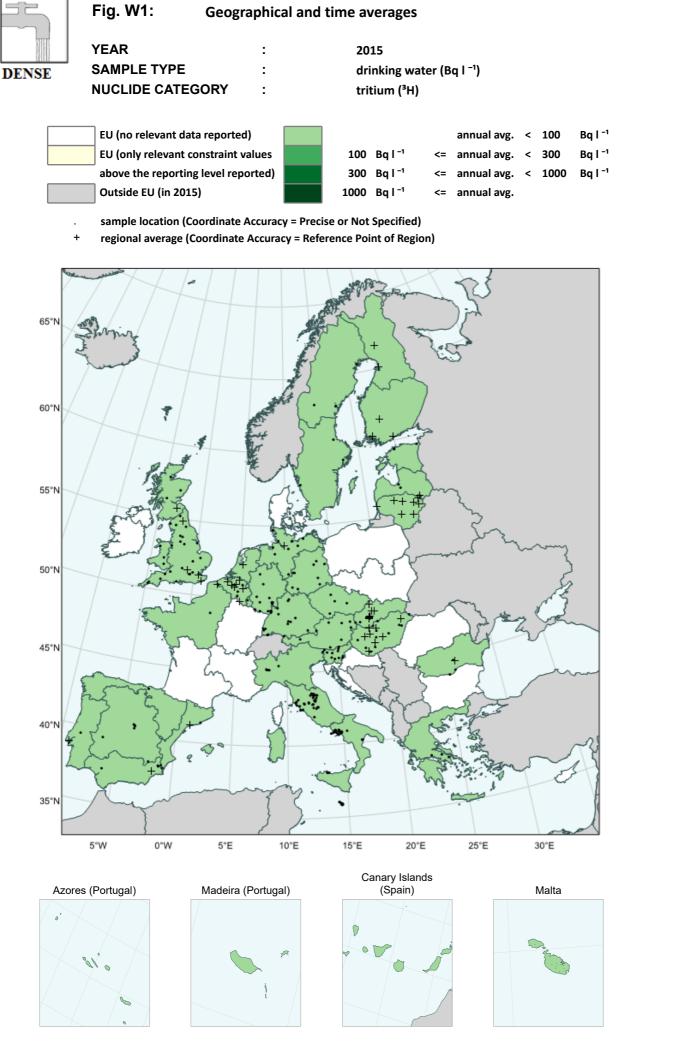


Table W1: Geographical and time averages DENSE

YEAR	:	2015
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	tritium (³H)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	117	9	< RL	12					
BE	48	12	< RL	11					
BG									
CY									
CZ	22	4	< RL	1					
DE-N	38	10	< RL	1					
DE-C DE-S	25 77	12 18	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	8 6
DE-S DE-E	24	9	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	3
DE-E	24 164	9 49	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	6
DK	704	49	S NL	SIL	SINL	SINL	SINL	SINL	
EE	6	3	< RL	< RL		< RL	< RL	< RL	3
ES-N	12	1	< RL	8					
ES-C	37	6	< RL	10					
ES-S	40	6	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	3
ES-E	45	3	< RL	9					
ES	134	16	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	9
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< RL	4
FI	10	5		< RL		< RL	< RL	< RL	4
FR-NW	5	1	< RL	< RL			< RL	< RL	2
FR-NE									
FR-SW									
FR-SE									
FR	5	1	< RL	< RL			< RL	< RL	2
GB-EN	110	25	< RL	9					
GB-WL	15	4	< RL	9					
GB-SC	23	4	< RL	1					
GB-NI									
GB	148	33	< RL	9					
GR	3	3		< RL	< RL		< RL	< RL	6
HR-A									
HR-C									
HR									
HU	65	20	< RL	5					
IE IT-N	20	-	< RL	- DI	0				
IT-N	30 36	6	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	2
IT-S	30 120	34 40	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	11 6
IT-S	120	40 80	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	2
LT	80	8	< RL	< RL < RL	< RL	< RL < RL	< RL < RL	< RL	4
LU	6	1	< RL	< RL	< RL < RL	< RL	< RL	< RL	3
LV	16	4	< RL	3					
MT	14	13	< RL	11					
NL	12	1	< RL	1					
PL-N									
PL-S									
PL									
PT	24	2	< RL	11					
RO-N									
RO-S	72	4		< RL		< RL	< RL	< RL	6
RO	72	4		< RL		< RL	< RL	< RL	6
SE-N	6	3	< RL	< RL	< RL		< RL	< RL	3
SE-S	6	3	< RL		< RL	< RL	< RL	< RL	9
SE	12	6	< RL	3					
SI	15	12	< RL	10					
0.									

RL: reporting level for ³H In drinking water, i.e. 1.0 E+02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

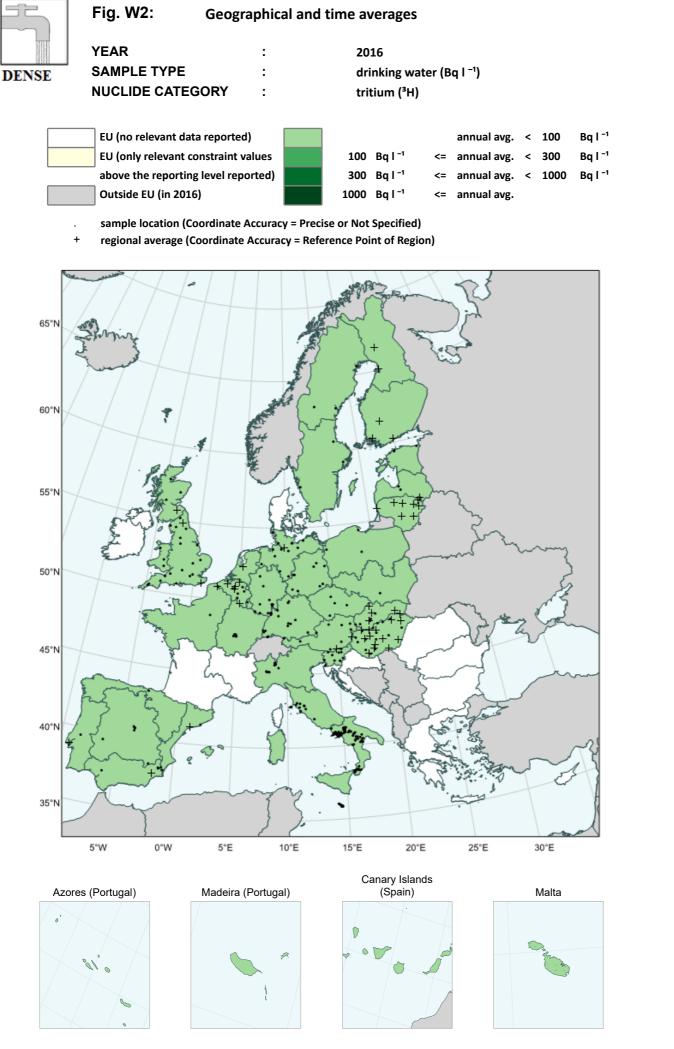


 Table W2:
 Geographical and time averages

DENSE

YEAR	:	2016
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	tritium (³H)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	114	9	< RL	< RL	< RL	< RL	< RL	< RL	11
BE	49	12	< RL	< RL	< RL	< RL	< RL	< RL	12
BG									
CY									
CZ	17	4	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	39	13	< <i>RL</i>	< RL	< RL	< RL	< RL	< <i>RL</i>	7
DE-C	24	11	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-S	86	18	< <i>RL</i>	< RL	< RL	< RL	< <i>RL</i>	< <i>RL</i>	4
DE-E	21	9	< RL	< RL	< RL	< RL	< RL	< RL	3
DE	170	51	< RL	< RL	< RL	< RL	< RL	< RL	2
DK				5/					
EE	6	3	< RL	< RL		< RL	< RL	< RL	2
ES-N	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-C	39	6	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-S	39	6	< RL	< RL	< <i>RL</i>	< RL	< RL	< RL	9
ES-E	40	3	< RL	< RL	< RL	< RL	< RL	< RL	2
ES	130	16	< RL	< RL	< RL	< RL	< RL	< RL	2
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< RL	4
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW	11	1	< RL	< RL	< RL	< RL	< RL	< RL	7
FR-NE	8	8			< RL		< RL	< RL	9
FR-SW									
FR-SE									
FR	19	9	< RL	< RL	< RL	< RL	< RL	< RL	9
GB-EN	75	20	< RL	< RL	< RL	< RL	< RL	< RL	10
GB-WL	12	3	< RL	< RL	< RL	< RL	< <i>RL</i>	< RL	1
GB-SC	24	4	< RL	< RL	< RL	< RL	< RL	< RL	11
GB-NI			5/						
GB	111	27	< RL	< RL	< RL	< RL	< RL	< RL	10
GR									
HR-A									
HR-C									
HR			. 5/	. 5/	. 5/	. 5/	. 5/	. 5/	
HU	88	29	< RL	< RL	< RL	< RL	< RL	< RL	5
IE IT N		11		1 D/	1.01	1.01	1.01	1.01	10
IT-N	38	11	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-C	11	10	< RL	< RL	< RL	< RL	< RL	< RL	11
IT-S	148	90	< RL	< RL	< RL	< RL	< RL	< RL	12
IT	197	111	< RL	< RL	< RL	< RL	< RL	< RL	10
LT	80	8	< RL	< RL	< RL	< RL	< RL	< RL	2
LU	5	1	< RL	< RL	< RL	< RL	< RL	< RL	11
LV MT	16 12	4	< RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL	10
		12	< RL					< RL	11
NL PL-N	12	1	< RL	< RL	< RL	< RL < RL	< RL	< RL	1
1	3	3				< RL < RL	< RL	< RL	12 12
PL-S	1	1					< RL	< RL	12
PL PT	4	4		- 01		< RL < RL	< RL	< RL	12
	24	2	< RL	< RL	< RL	< <i>K</i> L	< RL	< RL	4
RO-N									
RO-S									
RO	-								
SE-N	6	3		< RL	< RL		< RL	< RL	4
SE-S	6	3		< RL	< RL		< RL	< RL	4
SE	12	6		< RL	< RL		< RL	< RL	4
SI	12	11	< RL	< RL		< RL	< RL	< RL	3
SK	63	11	< RL	< RL	< RL	< RL	< RL	< RL	9

RL: reporting level for ³H In drinking water, i.e. 1.0 E+02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

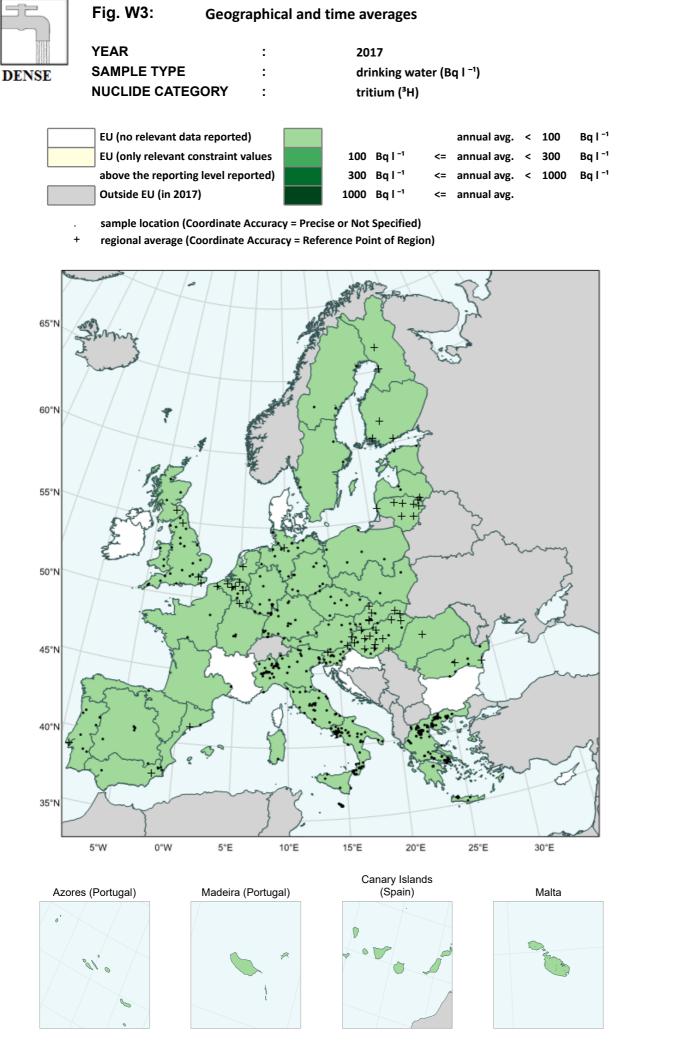


Table W3: Geographical and time averages DENSE

YEAR	:	2017
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	tritium (³H)

Country	Ν	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	116	9	< RL	2					
BE	48	12	< RL	6					
BG									
CY									
CZ	62	8	< RL	4					
DE-N	35	13	< RL	1					
DE-C	24	11	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	2
DE-S	89	20	< RL	9					
DE-E	24	9	< RL	1					
DE	172	53	< RL	2					
DK									
EE	6	3	< <i>RL</i>			< RL	< RL	< RL	2
ES-N	12	1	< <i>RL</i>	< RL	< RL	< RL	< RL	< <i>RL</i>	6
ES-C	39	6	< <i>RL</i>	< RL	< <i>RL</i>	< RL	< RL	< <i>RL</i>	10
ES-S	39	6	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	< RL	< RL	< <i>RL</i>	3
ES-E	40	3	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	8
ES	130	16	< RL	3					
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< <i>RL</i>	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW	12	3	< RL	10					
FR-NE	5	3		< RL		< RL	< RL	< RL	10
FR-SW	5	2	< RL	10					
FR-SE									
FR	22	8	< RL	11					
GB-EN	82	22	< RL	1					
GB-WL	13	4	< RL	1					
GB-SC	24	4	< RL	1					
GB-NI									
GB	119	30	< RL	3					
GR	204	189	< RL	1					
HR-A									
HR-C									
HR									
HU	83	26	< RL	7					
IE									
IT-N	84	54	< RL	4					
IT-C	31	27	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	12
IT-S	144	60	< RL	12					
IT	259	141	< RL	12					
LT	80	8	< RL	6					
LU	11	1	< RL	11					
LV	16	4	< RL	4					
MT	15	14	< RL	8					
NL	12	1	< RL	1					
PL-N	5	5	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	1
PL-S	2	2	< RL	< RL	< <i>RL</i>	< RL	< RL	< RL	1
PL	7	7	< RL	1					
PT	30	8	< RL	12					
RO-N	1	1	_,			< RL	< RL	< RL	12
RO-S	260	8	< RL	6					
RO	261	9	< RL	6					
SE-N	6	3		< RL		< RL	< RL	< RL	10
SE-S	6	3		< RL		< RL	< RL	< RL	5
SE	12	6		< RL		< RL	< RL	< RL	5
SI SK	18 83	13 11	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	12 8

RL: reporting level for ³H In drinking water, i.e. 1.0 E+02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

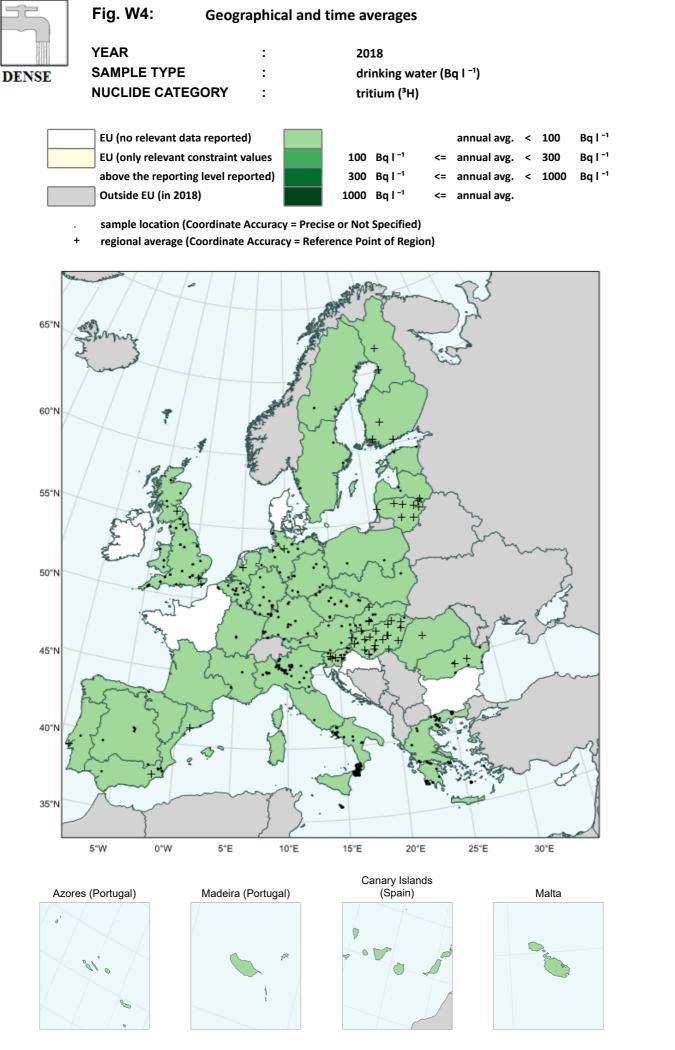


 Table W4:
 Geographical and time averages

DENSE

YEAR	:	2018
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	tritium (³H)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	105	9	< RL	10					
BE	47	13	< RL	3					
BG									
CY									
CZ	65	17	< RL	1					
DE-N	35	12	< RL	7					
DE-C	26	12	< RL	2					
DE-S	89	19	< RL	8					
DE-E	25	9	< RL	6					
DE	175	52	< RL	2					
DK									
EE	6	3	< RL			< RL	< RL	< RL	2
ES-N	12	1	< RL	1					
ES-C	40	6	< RL	5					
ES-S	40	6	< RL	6					
ES-E	48	3	< RL	8					
ES	140	16	< RL	8					
FI-N	2	2				< RL	< RL	< RL	10
FI-S	3	3				< RL	< RL	< RL	10
FI	5	5				< RL	< RL	< RL	10
FR-NW									
FR-NE	4	2		< RL			< RL	< RL	4
FR-SW	2	2				< RL	< RL	< RL	10
FR-SE	1	1	< RL				< RL	< RL	3
FR	7	5	< RL	< RL		< RL	< RL	< RL	4
GB-EN	82	40	< RL	1					
GB-WL	10	5	< RL	1					
GB-SC	26	5	< RL	1					
GB-NI									
GB	118	50	< RL	4					
GR	80	77	< RL	2					
HR-A									
HR-C									
HR									
HU	96	29	< RL	3					
IE	01	(7	. 5/		. 5/	. 5/	. 5/	. 5/	
IT-N	81	47	< RL	4					
IT-C	2	1	. 51	. 5/	< RL	< RL	< RL	< RL	8
IT-S	224	102	< RL	1					
IT	307	150	< RL	9					
LT	80	8	< RL	7					
LU LV	13 16	1	< RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	5 3
MT	5	4 5	< RL < RL	< RL < RL	< RL	< RL	< RL < RL	< RL < RL	5
NL	12	1	< RL	< RL < RL	< RL	< RL	< RL < RL	< RL < RL	1
PL-N	2	2	< RL < RL	< RL < RL	< RL	< RL < RL	< RL	< RL < RL	1
PL-N	1	1	< RL	12					
PL-5 PL	3	3	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	1
PL	24	2	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	9
RO-N	24	2	SINE	< RL < RL	- NL	SINE	< RL < RL	< RL < RL	9 4
RO-N RO-S	150	7	< RL	< RL < RL	< RL	< RL	< RL < RL	< RL < RL	4 11
RO-S	150	8	< RL < RL	< RL	< RL	< RL < RL	< RL < RL	< RL < RL	11
SE-N	6	8	< KL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	9
SE-N	6	3		< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	9 10
SE	12	6		< RL	10				
SI	12	13	< RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	10
SK	82	9	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	12
JI	02	9	S NL						12

RL: reporting level for ³H In drinking water, i.e. 1.0 E+02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

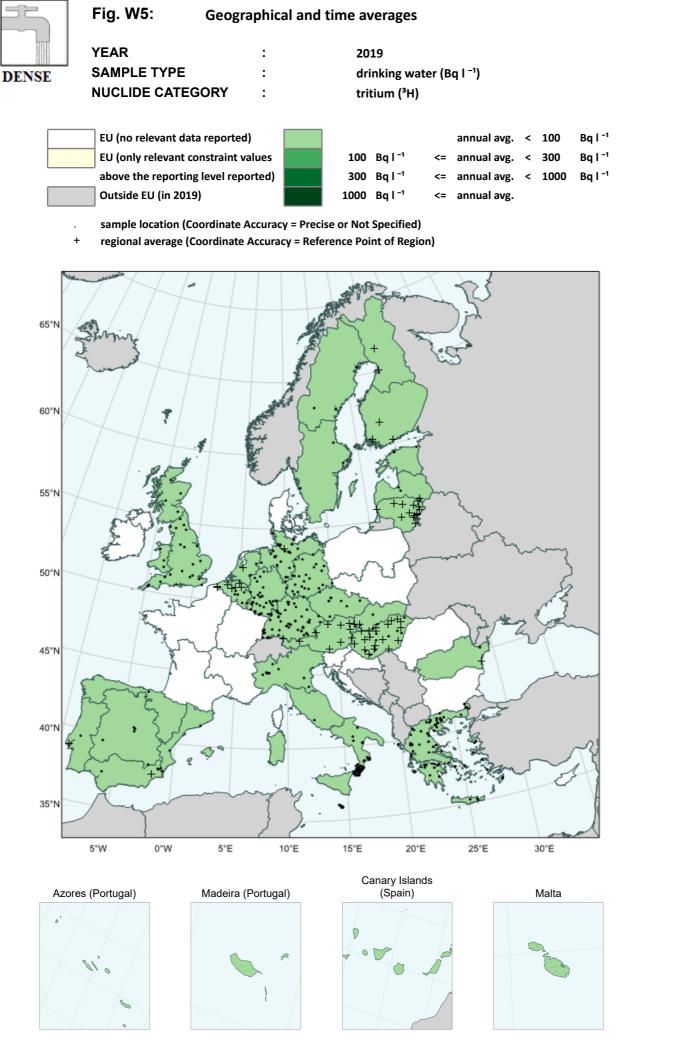


Table W5: Geographical and time averages

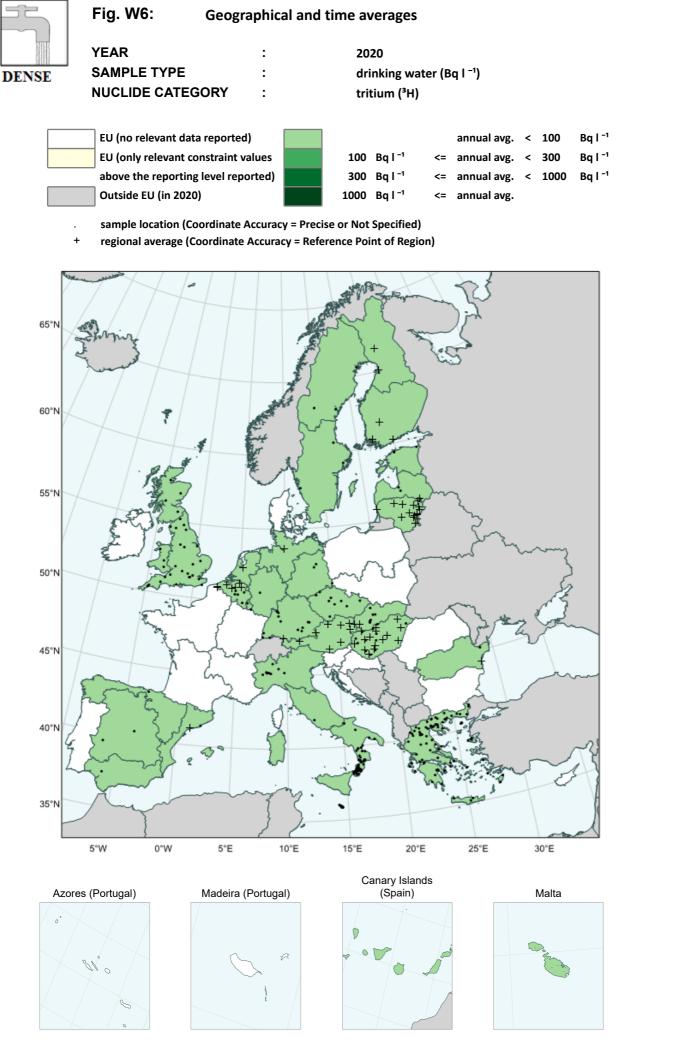
> : :

> > :

NUCLIDE CATEGORY

YEAR

2019 drinking water (Bq l⁻¹) tritium (³H)


Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Country	IN	-	quarter	quarter	quarter	quarter	average	max	IVI
AT	108	9	< RL	3					
BE	49	12	< RL	9					
BG									
СҮ									
CZ	30	9	< RL	1					
DE-N	134	29	< RL	1					
DE-C	100	32	< RL	8					
DE-S	427	62	< RL	12					
DE-E	75	24	< RL	6					
DE	736	147	< RL	10					
DK									
EE	6	3	< RL			< RL	< RL	< RL	2
ES-N	12	1	< <i>RL</i>	< RL	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	1
ES-C	38	6	< <i>RL</i>	< RL	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	10
ES-S	40	6	< RL	3					
ES-E	41	3	< RL	< RL	< RL	< RL	< <i>RL</i>	< RL	11
ES	131	16	< RL	3					
FI-N	2	2		< RL			< RL	< RL	4
FI-S	3	3		< RL			< RL	< RL	5
FI FR-NW	5	5		< RL			< RL	< RL	5
FR-NE									
FR-NE									
FR-SW									
FR-SE									
GB-EN	84	21	< RL	1					
GB-WL	12	3	< RL	1					
GB-SC	24	4	< RL	1					
GB-NI		· · ·	.,		.,		.,	.,	,
GB	120	28	< RL	10					
GR	90	89	< RL	1					
HR-A									
HR-C									
HR									
HU	88	31	< RL	9					
IE									
IT-N	43	11	< RL	9					
IT-C	2	1		< RL		< RL	< RL	< RL	11
IT-S	210	79	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	5
IT	255	91	< RL	10					
LT	136	15	< RL	3					
LU	22	2	< RL	1					
LV	16	4	< RL	12					
MT	14	14	< RL	5					
NL	12	1	< RL	1					
PL-N									
PL-S									
PL			. 51	. 51	. 5/		. 51	. 51	
PT	24	2	< RL	1					
RO-N									~
RO-S	80	2	< RL	9					
RO	80	2	< RL	9					
SE-N	6	3		< RL	< RL		< RL	< RL	9
SE-S SE	6	3		< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	9
	12	6		<pre></pre>	< RL	< KL	< RL	< KL	9
SI	11	E	< <i>RL</i>				< RL		7
SK	11	5	< <i>K</i> L	< RL	< RL		< RL	< RL	7

RL: reporting level for ³H In drinking water, i.e. 1.0 E+02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

SAMPLE TYPE

Table W6: Geographical and time averages

DENSE

YEAR	:	2020
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	tritium (³ H)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	106	9	< RL	< RL	< RL	< RL	< RL	< RL	1
BE	96	12	< RL	< RL	< RL	< RL	< RL	< RL	6
BG									
СҮ									
CZ	35	9	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	1	1	< RL				< RL	< RL	1
DE-C	1	1	< RL				< RL	< RL	1
DE-S	16	13	< RL				< RL	< RL	1
DE-E	3	3	< RL				< RL	< RL	1
DE	21	18	< RL				< RL	< RL	1
DK									
EE	6	3	< RL			< RL	< RL	< RL	3
ES-N	10	1	< RL	< RL	< RL	< <i>RL</i>	< <i>RL</i>	< RL	6
ES-C	23	2	< RL	< RL	< RL	< RL	< RL	< RL	4
ES-S	24	2	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-E	36	2	< RL	< RL	< <i>RL</i>	< <i>RL</i>	< RL	< <i>RL</i>	7
ES	93	7	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-N	2	2				< RL	< RL	< RL	11
FI-S	3	3				< <i>RL</i>	< RL	< <i>RL</i>	10
FI	5	5				< RL	< RL	< RL	11
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	41	24	< RL	< RL		< RL	< RL	< RL	11
GB-WL	5	3	< RL			< RL	< RL	< RL	12
GB-SC	24	4	< RL		< RL	< RL	< RL	< RL	8
GB-NI									
GB	70	31	< RL	< RL	< RL	< RL	< RL	< RL	4
GR	82	82	< RL	< RL	< RL	< RL	< RL	< RL	1
HR-A									
HR-C									
HR									
HU	71	27	< RL	< RL	< RL	< RL	< RL	< RL	9
IE									
IT-N	34	11	< RL	< RL	< RL	< RL	< RL	< RL	3
IT-C	2	1		< RL		< RL	< RL	< RL	6
IT-S	163	63	< RL	< RL	< RL	< RL	< RL	< RL	1
ІТ	199	75	< RL	< RL	< RL	< RL	< RL	< RL	9
LT	126	15	< RL	< RL	< RL	< RL	< RL	< RL	8
LU	25	2	< RL	< RL	< RL	< RL	< RL	< RL	2
LV	16	4	< RL	< RL	< RL	< RL	< RL	< RL	3
MT	10	10	< RL	< RL	< RL	< RL	< RL	< RL	6
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N									
PL-S									
PL									
PT									
RO-N		1							1
RO-S	59	2	< RL	< RL	< RL	< RL	< RL	< RL	10
RO	59	2	< RL	< RL	< RL	< RL	< RL	< RL	10
SE-N	6	3		< RL	< RL	< RL	< RL	< RL	5
SE-S	6	3		< RL	< RL		< RL	< RL	9
SE	12	6		< RL	< RL	< RL	< RL	< RL	9
SI									
SK	62	9	< RL	< RL	< RL	< RL	< RL	< RL	12

RL: reporting level for ³H In drinking water, i.e. 1.0 E+02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

145



 Table W7:
 Geographical and time averages

DENSE

YEAR	:	
SAMPLE TYPE	:	
NUCLIDE CATEGORY	:	

2015 drinking water (Bq l ⁻¹) strontium-90 (⁹⁰Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	5	1	< RL	< RL	< RL	< RL	< RL	< RL	4
BE									
BG	17	4	< RL	< RL	< RL	< RL	< RL	< RL	3
СҮ									
CZ	13	4	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-N	31	11	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-C	17	8	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-S	20	10	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-E	22	9	< RL	< RL	< RL	< RL	< RL	< RL	3
DE	90	38	< RL	< RL	< RL	< RL	< RL	< RL	2
DK									
EE	2	1	< RL			< RL	< RL	< RL	3
ES-N	29	5	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-C	44	7	< RL	< RL	< RL	< RL	< RL	< RL	4
ES-S	31	4	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-E	24	4	< RL	< RL	< RL	< RL	< RL	< RL	3
ES	128	20	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	4	2		< RL		< RL	< RL	< RL	4
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	4
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	109	25	< RL	< RL	< RL	< RL	< RL	< RL	10
GB-WL	15	4	< RL	< RL	< RL	< RL	< RL	< RL	7
GB-SC	23	4	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-NI									
GB	147	33	< RL	< RL	< RL	< RL	< RL	< RL	3
GR									
HR-A									
HR-C									
HR									
HU	48	16	< RL	< RL	< RL	< RL	< RL	< RL	2
IE									
IT-N	21	7	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-C									
IT-S									
п	21	7	< RL	< RL	< RL	< RL	< RL	< RL	1
LT									
LU					1	1		i i	
LV						1			
МТ	14	13	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	8
NL					i				
PL-N									
PL-S									
PL									
PT	24	2	< RL	< RL	< RL	< RL	< RL	< RL	8
RO-N						=			-
RO-S									
RO									
SE-N	6	3	< RL	< RL	< RL		< RL	< RL	3
SE-N	6	3	< RL	- 116	< RL	< RL	< RL	< RL	9
SE-S	12	6	< RL < RL	< RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	3
SI	12			< RL < RL	< RL < RL	< RL < RL	< RL < RL		5
SK		12	< RL					< RL	
SN	32	5	< RL	< RL	< RL	< RL	< RL	< RL	5

RL: reporting level for ^{90}Sr In drinking water, i.e. 6.0 E-02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

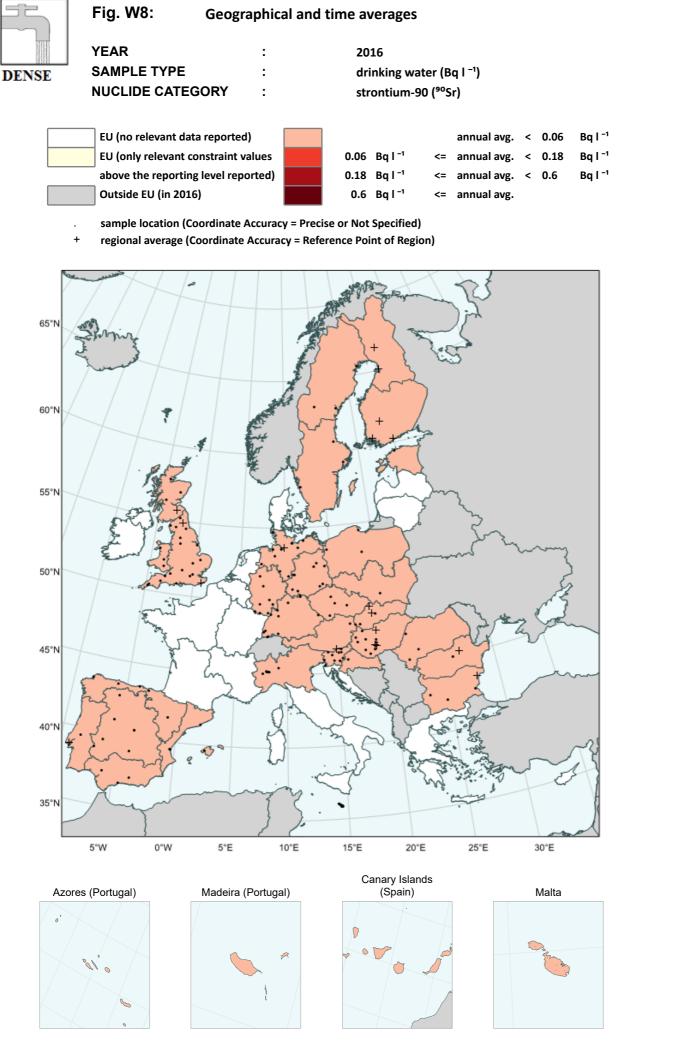


Table W8: Geographical and time averages

YEAR : 2016 SAMPLE TYPE : drinking water (Bq l⁻¹) NUCLIDE CATEGORY : strontium-90 (⁹⁰Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
, ,		_	quarter	quarter	quarter	quarter	average	max	
AT	5	1	< RL	1					
BE									
BG	18	4	< RL	8					
СҮ									
CZ	13	4	< RL	9					
DE-N	28	11	< RL	1					
DE-C	18	8	< RL	5					
DE-S	24	12	< RL	4					
DE-E DE	21 91	9 40	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	9 5
DK	91	40	< RL	< RL	< RL	< RL			
EE	2	1	< RL			< RL	< RL	< RL	3
ES-N	29	5	< RL	5					
ES-C	44	7	< RL	11					
ES-S	32	4	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	12
ES-E	24	4	< RL	2					
ES	129	20	< RL	11					
FI-N	4	2		< RL		< RL	< RL	< RL	4
FI-S	6	3		< RL		< RL	< RL	< RL	4
FI	10	5		< RL		< RL	< RL	< RL	4
FR-NW									
FR-NE									
FR-SW									
FR-SE FR									
GB-EN	75	20	< RL	1					
GB-EN	12	3	< RL	1					
GB-SC	24	4	< RL	12					
GB-NI			.,		.,		.,	.,	
GB	111	27	< RL	3					
GR									
HR-A									
HR-C	1	1				< RL	< RL	< RL	12
HR	1	1				< RL	< RL	< RL	12
HU	48	13	< RL	9					
IE									
IT-N	21	7	< RL	10					
IT-C IT-S									
IT-S	21	7	< RL	10					
LT	21	,	STAL	SAL	S AL	SIL	SIL	SAL	10
LU									
LV									
МТ	12	12	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	4
NL									
PL-N	3	3				< RL	< RL	< RL	12
PL-S	1	1				< RL	< RL	< RL	12
PL	4	4				< RL	< RL	< RL	12
PT	22	2	< RL	11					
RO-N	21	3		< RL	5				
RO-S	73	2		< RL	5				
RO	94	5		< RL	5				
SE-N SE-S	6	3 3		< RL < RL	< RL < RL		< RL < RL	< RL < RL	4
SE-S	6 12	6		< RL < RL	< RL < RL		< RL < RL	< RL < RL	4 4
SI	12	11	< RL	< RL	- 112	< RL	< RL < RL	< RL < RL	4
SK	36	5	< RL	3					
		5						,,,_	

RL: reporting level for 90 Sr In drinking water, i.e. 6.0 E-02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

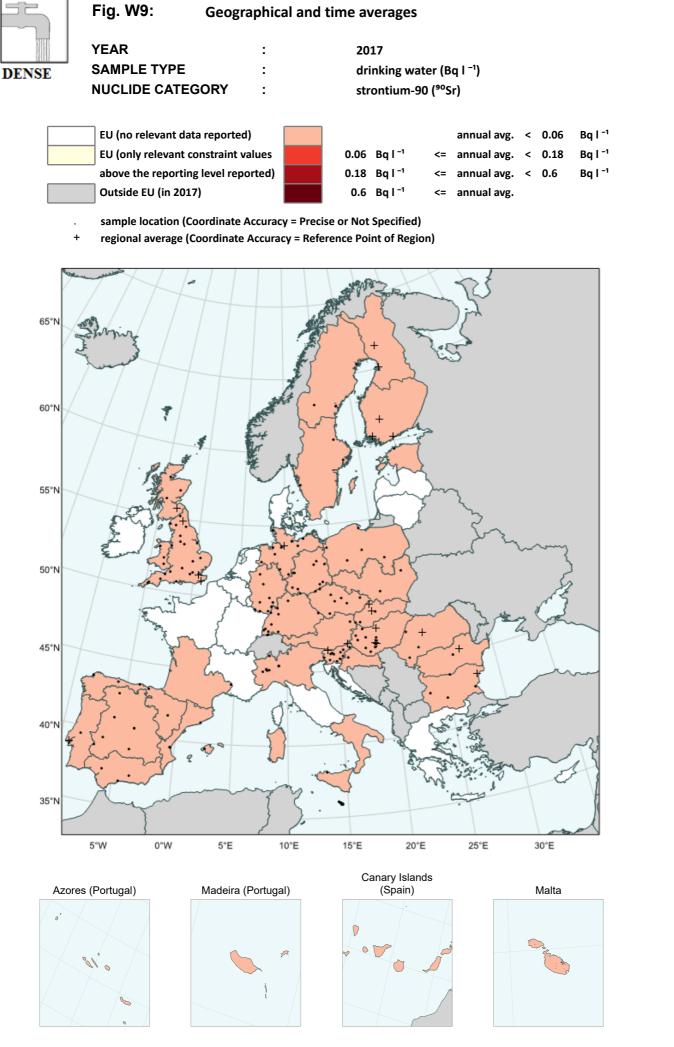


Table W9: Geographical and time averages DENSE

YEAR	:	
SAMPLE TYPE	:	
NUCLIDE CATEGORY	:	

2017 drinking water (Bq l⁻¹) strontium-90 (⁹⁰Sr)

AT 5 1 $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL $<$ RL	1	
BE		
BG 18 4 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< $	1	
CY	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
DE-C 16 8 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	
DE 96 42 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$	9	
DK - - - </th <th>1</th>	1	
EE 2 1 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$	4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
ES-C 44 7 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	
ES-E 24 4 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$	3	
ES 128 20 < RL	11	
FI-N 4 2 < RL	12	
FI-S 6 3 < RL	3	
FI 10 5 < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <rl< th=""> < <<rl< th=""> <<<rl< th=""> <<<</rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<></rl<>	<<<<<<<<<<	10
FR-NW FR-NE FR-NE S 2 < RL	10	
FR-NE FR-SW 5 2 < RL	10	
FR-SW 5 2 < RL		
FR-SE 5 2 < RL		
FR 5 2 < RL	10	
GB-EN 82 22 < RL		
GB-WL 13 4 < RL < RL <td< th=""><th>10</th></td<>	10	
GB-SC GB-NI GB 24 4 < RL <	1	
GB-NI GB 119 30 < RL	1	
GB 119 30 < RL	7	
GR Image: Constraint of the second secon		
HR-A HR-C 4 1 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< R$	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
HR 4 1 < RL		
HU 48 13 < RL	7	
IE Image: Constraint of the second seco	7	
IT-N 22 9 < RL	9	
IT-C I		
IT-S 1 1 <	4	
IT 23 10 < RL		
LT Image: Constraint of the second seco	11	
LU I I I I I I I I I I I I I I I I I I I	4	
MT 15 14 < RL < RL < RL < RL < RL < RL	7	
NL IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
PL-N 5 5 < RL	12	
PL-S 2 2 < RL	1	
PL 7 7 < RL	12	
PT 24 2 < RL	5	
RO-N 17 4 < RL	6	
RO-S 63 3 < RL	2	
RO 80 7 < RL	2	
SE-N 6 3 < RL	10	
SE-S 6 3 < RL	4	
SE 12 6 < RL	10	
SI 18 13 < RL	2	
SK 36 5 < RL	10	

RL: reporting level for 90 Sr In drinking water, i.e. 6.0 E-02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

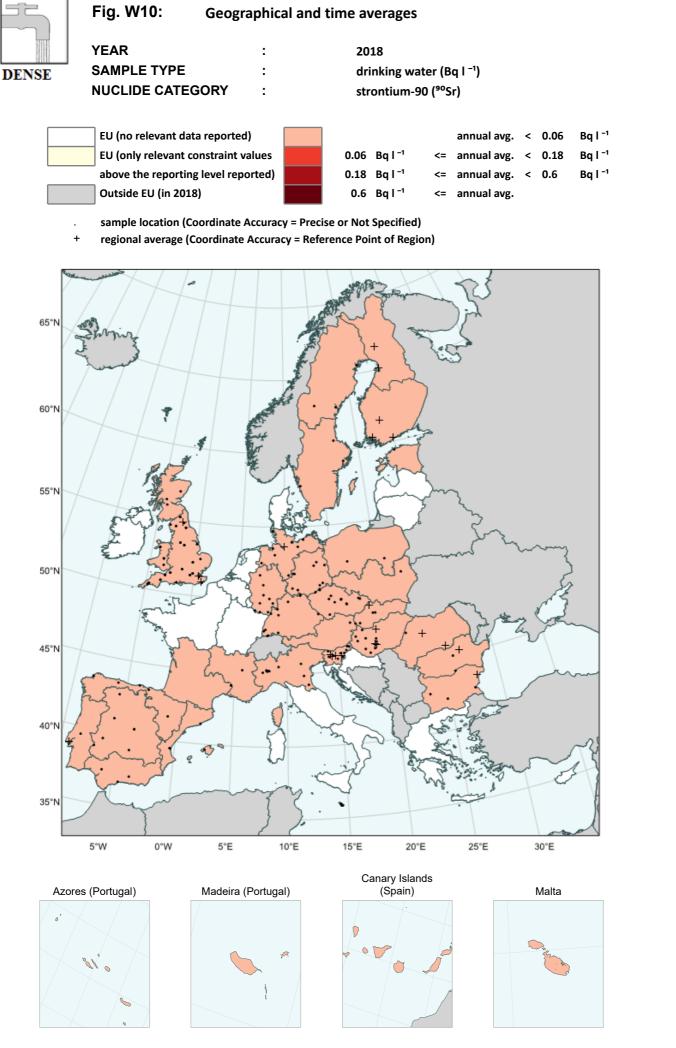


 Table W10:
 Geographical and time averages

DENSE

YEAR	:	2018
SAMPLE TYPE	:	drinking water (Bq l ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

BE 18 BG 18 CY 34 CZ 34		quarter 1 < RL	quarter < RL	quarter	quarter	average	max	
BE 18 BG 18 CY 34		1 < RL	< RL	~ 01				
BG 18 CY 1 CZ 34	3			< RL	< RL	< RL	< RL	7
CY CZ 34	3 ·							
CZ 34		4 < RL	< RL	< RL	< RL	< RL	< RL	8
			< RL	< RL	< RL	< RL	< RL	1
DE-N 26		9 < RL	< RL	< RL	< RL	< RL	< RL	7
DE-C 19		9 < RL	< RL	< RL	< RL	< RL	< RL	11
DE-S 20			< RL	< RL	< RL	< RL	< RL	9
DE-E 22		9 < RL	< RL	< RL	< RL	< RL	< RL	2
DE 87	7 3	9 < RL	< RL	< RL	< RL	< RL	< RL	10
DK								
EE 2		1 < RL			< RL	< RL	< RL	2
ES-N 30		5 < RL	< RL	< RL	< RL	< RL	< RL	9
ES-C 44		7 < RL	< RL	< RL	< RL	< RL	< RL	3
ES-S 32	2 .	4 < RL	< RL	< RL	< RL	< RL	< RL	7
ES-E 23		4 < RL	< RL	< RL	< RL	< RL	< RL	10
ES 129			< RL	< RL	< RL	< RL	< RL	4
FI-N 2		2			< RL	< RL	< RL	10
FI-S		3			< RL	< RL	< RL	10
FI £	5	5			< RL	< RL	< RL	10
FR-NW								
FR-NE								
FR-SW 2	2	2			< RL	< RL	< RL	10
FR-SE	1	1 < RL				< RL	< RL	3
FR 3	3 .	3 < RL			< RL	< RL	< RL	10
GB-EN 82			< RL	< RL	< RL	< RL	< RL	1
GB-WL 10) ;	5 < RL	< RL	< RL	< RL	< RL	< RL	1
GB-SC 18	3 .	3 < RL	< RL	< RL	< RL	< RL	< RL	8
GB-NI								
GB 110) 4	3 < RL	< RL	< RL	< RL	< RL	< RL	2
GR								
HR-A								
HR-C								
HR								
HU 48	3 1.	3 < RL	< RL	< RL	< RL	< RL	< RL	5
IE								
IT-N 29	9 1	1 < RL	< RL	< RL	< RL	< RL	< RL	7
IT-C								
IT-S								
IT 29	9 1	1 < RL	< RL	< RL	< RL	< RL	< RL	7
LT								
LU								
LV								
	5	5 < RL	< RL			< RL	< RL	1
NL								
		2 < <i>RL</i>	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	12
PL-S		1 < RL	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	1
		3 < RL	< RL	< RL	< RL	< RL	< RL	1
PT 24		2 < RL	< RL	< RL	< RL < RL		< RL	8
RO-N 40		3 < RL	< RL	< RL	< RL < RL		< RL	1
RO-S 70		3 < RL	< RL	< RL	< RL < RL		< RL	9
RO 110		6 < RL	< RL	< RL	< RL < RL		< RL	9
		3	< RL		< RL < RL		< RL	10
SE-S		3	< RL	< RL	< RL < RL		< RL	9
SE 10		6	< RL	< RL	< RL < RL		< RL	10
SI 16			< RL	< RL	< RL < RL		< RL	5
SK 36	6	5 < RL	< RL	< RL	< RL	< RL	< RL	9

RL: reporting level for ^{90}Sr In drinking water, i.e. 6.0 E-02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

153

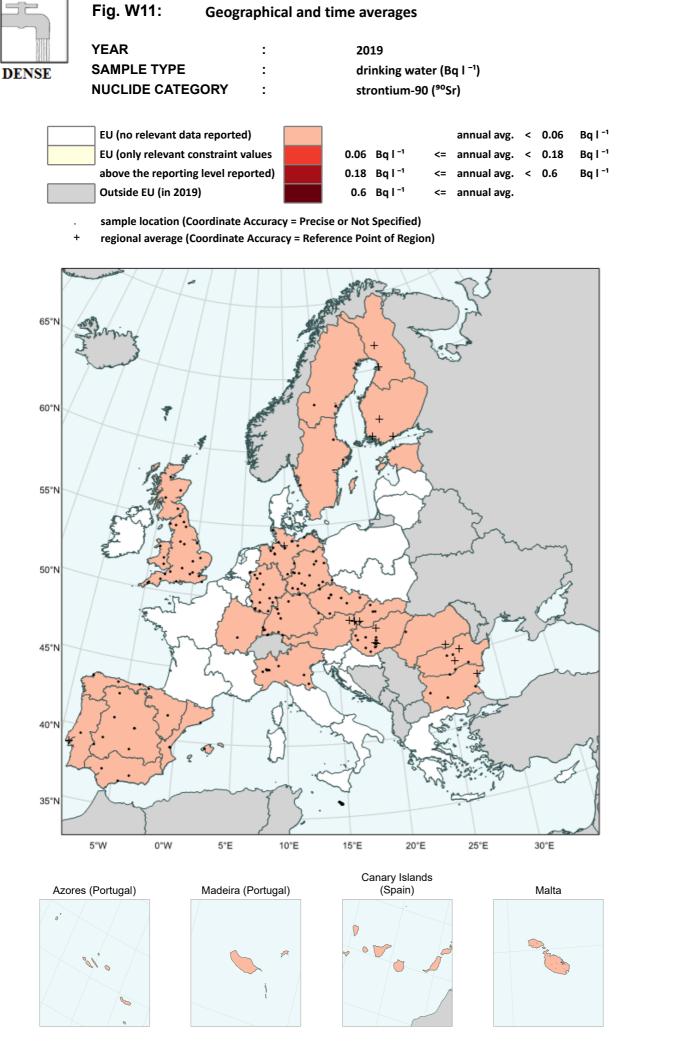
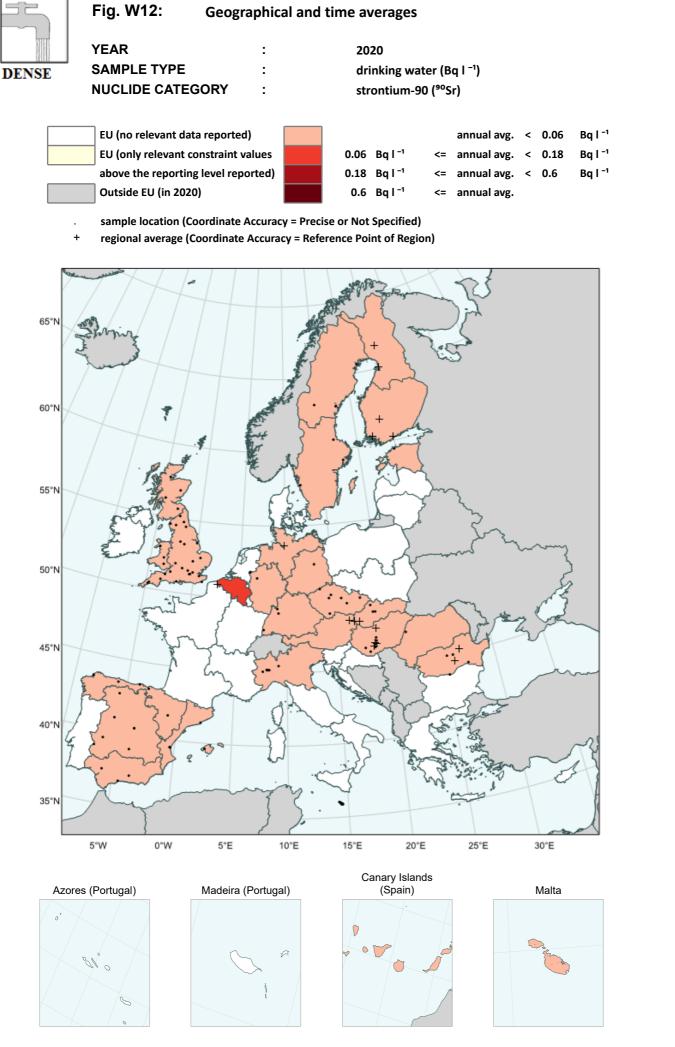


 Table W11:
 Geographical and time averages



YEAR : SAMPLE TYPE : NUCLIDE CATEGORY :

2019 drinking water (Bq l ⁻¹) strontium-90 (⁹⁰Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	4	1	< RL	< RL	< RL	< RL	< RL	< RL	4
BE									
BG	18	4	1.1E-01	< RL	< RL	< RL	< RL	2.0E-01	1
CY									
CZ	30	9	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	31	12	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-C	32	15	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-S	26	13	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-E	41	16	< RL	< RL	< RL	< RL	< RL	1.0E-01	11
DE	130	56	< RL	< RL	< RL	< RL	< RL	< RL	11
DK	2	- 1	< RL			< RL	< RL	< RL	2
		1		1 DI	- Di				
ES-N ES-C	28	5	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	4
ES-C ES-S	44	7	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	9
	32	4		1					6
ES-E	24	4	< RL	< RL	< RL	< RL	< RL	< RL	5
ES FI-N	128 2	20 2	< RL	< RL < RL	< RL	< RL	< RL < RL	< RL < RL	6 4
FI-N FI-S	3	2		< RL < RL			< RL < RL	< RL < RL	4 5
				1					
FI FR-NW	5	5		< RL			< RL	< RL	5
FR-NE	1	1		< RL			< RL	< RL	5
									5
FR-SW									
FR-SE FR	1			< RL			< RL	< RL	-
GB-EN	84	1 21	< RL	< RL < RL	< RL	< RL	< RL < RL	< RL < RL	5
GB-EN GB-WL	12	3	< RL < RL	< RL < RL	< RL	< RL < RL	< RL < RL	< RL < RL	1
GB-WL GB-SC	24	4	< RL < RL	< RL < RL	< RL	< RL < RL	< RL < RL	< RL < RL	2
GB-SC GB-NI	24	4	< RL						2
GB	120	28	< RL	< RL	< RL	< RL	< RL	< RL	2
GR	120	20	SIL	SIL	SIL	SIL	SIL	SIL	
HR-A									
HR-C									
HR									
HU	44	12	< RL	< RL	< RL	< RL	< RL	< RL	3
IE									
IT-N	28	10	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-C									
IT-S									
IT	28	10	< RL	< RL	< RL	< RL	< RL	< RL	1
LT									
LU	<u> </u>								
LV	<u> </u>								
MT	14	14	< RL	< RL	< RL	< RL	< RL	< RL	11
NL	<u> </u>							-	
PL-N									
PL-S									
PL									
PT	24	2	< RL	< RL	< RL	<pre></pre>		< RL	5
RO-N	21	2	< RL	< RL	< RL	< RL < RL < RL < RL		< RL	4
RO-S	43	7	< RL	< RL	< RL	< RL < RL		< RL	6
RO	64	9	< RL	< RL	< RL	< RL < RL < RL		< RL	4
SE-N	6	3		< RL	< RL	< RL < RL < RL < RL		< RL	9
SE-S	6	3		< RL	< RL	<pre></pre>		< RL	9
SE	12	6		< RL	< RL	<pre></pre>		< RL	9
SI		-							
SK	31	7	< RL	< RL	< RL	< RL	<pre></pre>		10
	<u> </u>	'							

RL: reporting level for ^{90}Sr In drinking water, i.e. 6.0 E-02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

YEAR	:	2020
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
BE	2	1		1.2E-01			1.2E-01	1.2E-01	5
BG									
CY									
CZ	27	7	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	1	1	< RL				< RL	< RL	1
DE-C	2	2	< RL				< RL	< RL	1
DE-S	3	3	< RL				< RL	< RL	1
DE-E	1	1	< RL				< RL	< RL	1
DE	7	7	< RL				< RL	< RL	1
DK									
EE	2	1	< RL			< RL	< RL	< RL	3
ES-N	26	5	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-C	42	7	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-S	32	4	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-E	24	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES	124	20	< RL	< RL	< RL	< RL	< RL	< RL	8
FI-N	2	2				< RL	< RL	< RL	11
FI-S	3	3				< RL	< RL	< RL	10
FI	5	5				< RL	< RL	< RL	10
FR-NW						ĺ		ĺ	
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	40	24	< RL	< RL		< RL	< RL	< RL	1
GB-WL	5	3	< RL			< RL	< RL	< RL	1
GB-SC	24	4	< RL		< RL	< RL	< RL	< RL	9
GB-NI									
GB	69	31	< RL	< RL	< RL	< RL	< RL	< RL	9
GR									
HR-A									
HR-C									
HR									
HU	36	10	< RL	< RL	< RL	< RL	< RL	< RL	6
IE									
IT-N	20	6	< RL	< RL	< RL	< RL	< RL	< RL	3
IT-C									
IT-S									
п	20	6	< RL	< RL	< RL	< RL	< RL	< RL	3
LT						1		i	
LU									
LV						1		1	
МТ	9	9	< RL	< RL	< RL	< RL	< RL	< RL	2
NL						1		1	
PL-N						1			
PL-S									
PL									
PT									
RO-N	22	1	< RL	< RL	< RL	< RL < RL		< RL	4
RO-S	46	6	< RL	< RL	< RL	<pre><rl <="" rl<br="">< RL < RL</rl></pre>		< RL	2
RO	68	7	< RL	< RL	< RL	< RL < RL < RL < RL		< RL	1
SE-N	6	3		< RL	< RL	<pre></pre>		< RL	5
SE-S	6	3		< RL	< RL	< RL < RL < RL < RL		< RL	5
SE	12	6		< RL	< RL	<pre></pre>		< RL	5
SI				-116	- 116			-112	~
SK	22	5	< RL	< RL	< RL	< RL	<pre></pre>		3
SIL		5	> KL					< RL	3

RL: reporting level for ^{90}Sr In drinking water, i.e. 6.0 E-02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

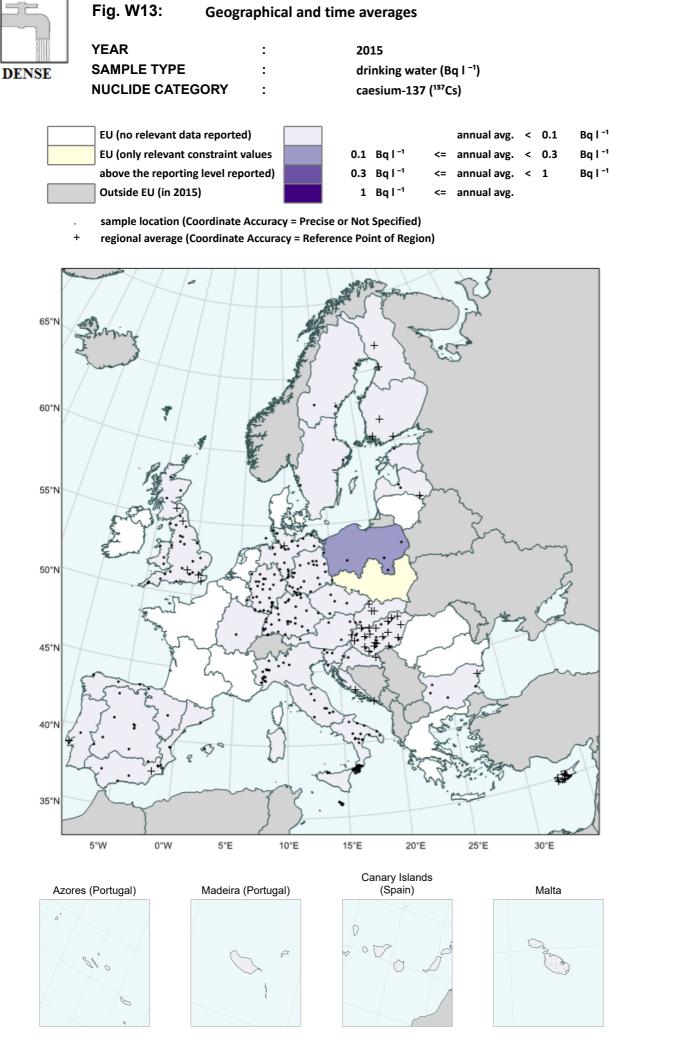


Table W13: Geographical and time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 drinking water (Bq l⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	52	4	< RL	< RL	< RL	< RL	< RL	< RL	2
BE									
BG	21	5	< RL	< RL	< RL	< RL	< RL	< RL	3
CY	35	21		< RL		< RL	< RL	< RL	11
CZ	15	4	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-N	69	21	< RL	< RL	< RL	< RL	< RL	< RL	6
DE-C	69	26	< RL	< RL	< RL	< RL < RL		< RL	2
DE-S	115	34	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-E	87	24	< RL	< RL	< RL	< RL	< RL	< RL	5
DE	340	105	< RL	< RL	< RL	< RL	< RL	< RL	2
DK									
EE	2	1	< RL			< RL	< RL	< RL	3
ES-N	60	5	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-C	82	10	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-S	59	8	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-E	49	5	< RL	< RL	< RL	< RL	< RL	< RL	9
ES	250	28	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW									
FR-NE	1	1		< RL			< RL	< RL	4
FR-SW									
FR-SE									
FR	1	1		< RL			< RL	< RL	4
GB-EN	111	25	< RL	< RL	< RL	< RL < RL		< RL	10
GB-WL	15	4	< RL	< RL	< RL	< RL < RL		< RL	12
GB-SC	23	4	< RL	< RL	< RL	< RL < RL		< RL	4
GB-NI									
GB	149	33	< RL	< RL	< RL	< RL	< RL	< RL	10
GR									
HR-A	3	3		< RL	< RL		< RL	< RL	6
HR-C	6	2	< RL	< RL	< RL	< RL	< RL	< RL	9
HR	9	5	< RL	< RL	< RL	< RL	< RL	< RL	6
HU	120	41	< RL	< RL	< RL	< RL	< RL	< RL	10
IE									
IT-N	71	19	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-C	8	7		< RL		< RL	< RL	< RL	6
IT-S	84	47	< RL	< RL	< RL	< RL	< RL	< RL	2
ІТ	163	73	< RL	< RL	< RL	< RL	< RL	< RL	2
LT									
LU	26	1	< RL	< RL	< RL	< RL	< RL	< RL	4
LV	16	4	< RL	< RL	< RL	< RL	< RL	< RL	9
МТ	14	13	< RL	< RL	< RL	< RL	< RL	< RL	2
NL									
PL-N	6	4	1.5E-01	1.5E-01	1.5E-01	1.4E-01	1.5E-01	1.5E-01	1
PL-S							Δ		
PL	6	4	1.5E-01	1.5E-01	1.5E-01	1.4E-01	1.5E-01	1.5E-01	1
PT	24	2	< RL	< RL	< RL	< RL	< RL	< RL	6
RO-N		T							
RO-S									
RO									
SE-N	6	3	< RL	< RL	< RL	< RL		< RL	3
SE-S	6	3	< RL		< RL	< RL < RL		< RL	9
SE	12	6	< RL	< RL	< RL			< RL	3
	12	°	-112	-742					
SI SK	5	4 5	< RL	< RL < RL	< <i>RL</i>	< RL < RL	< RL < RL	< RL < RL	10 3

RL: reporting level for $^{\rm 137}Cs$ In drinking water, i.e. 1.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

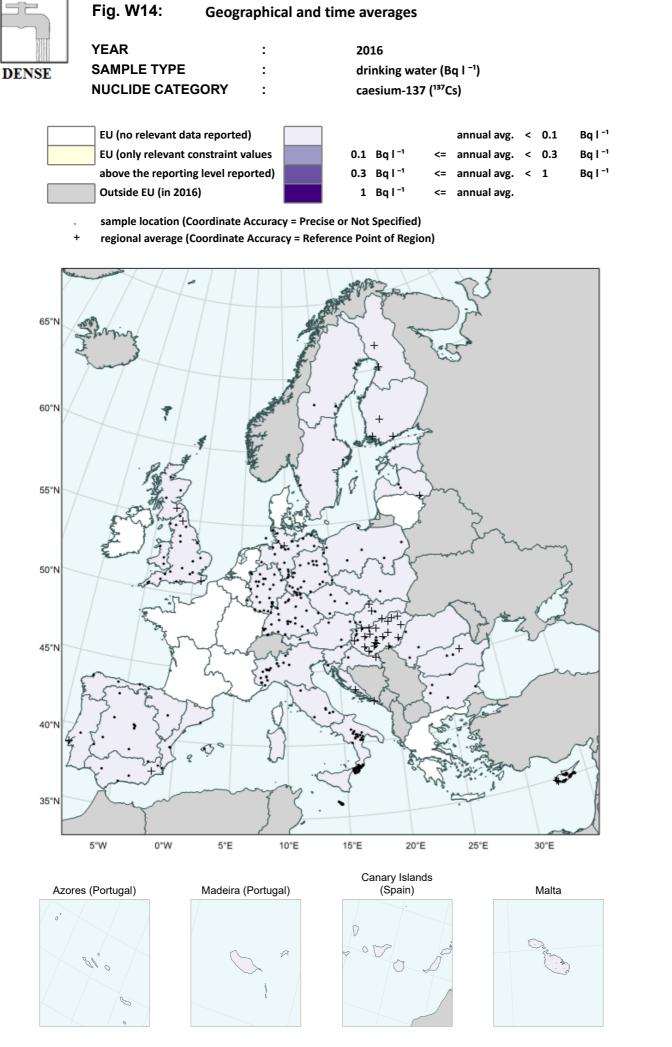


Table W14: Geographical and time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2016 drinking water (Bq I⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st 2nd 3rd 4th Annual Monthly					М	
country		-	quarter	quarter	quarter	quarter	average	max	
AT	52	4	< RL	< RL	< RL	< RL	< RL	< <i>RL</i>	1
BE									
BG	17	4	< RL	< RL	< RL	< RL	< RL	< RL	7
CY	55	44	< RL	< RL	< RL		< RL	< RL	1
CZ	16	4	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-N	69	22	< <i>RL</i>	< <i>RL</i>	< RL	< RL	< RL	< <i>RL</i>	5
DE-C	67	24	< <i>RL</i>	< RL	< RL	< RL			11
DE-S	130	32	< RL	< RL	< RL	< RL	< RL	< RL < RL	4
DE-E	85	24	< RL	< RL	< RL	< RL	< RL	< RL	1
DE	351	102	< RL	< RL	< RL	< RL	< RL	< RL	4
DK									
EE	2	1	< RL			< RL	< RL	< RL	3
ES-N	60	5	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-C	94	11	< RL	< RL	< RL	< RL	< RL	< RL	4
ES-S	59	6	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-E	52	5	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	3
ES	265	27	< RL	< RL	< RL	< RL	< RL	< RL	3
FI-N	4	2		< RL		< RL	< <i>RL</i>	< RL	4
FI-S	6	3		< RL		< RL	< RL	< RL	4
FI	10	5		< RL		< RL	< RL	< RL	4
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	75	20	< RL	< RL	< RL	< RL	< RL < RL		1
GB-WL	12	3	< RL	< RL	< RL	< RL	< RL < RL		9
GB-SC	24	4	< RL	< RL	< RL	< RL < RL		< RL < RL	12
GB-NI									
GB	111	27	< RL	< RL	< RL	< RL	< RL	< RL	2
GR									
HR-A	3	3		< RL			< RL	< RL	6
HR-C	6	2	< RL	< RL	< RL	< RL	< RL	< RL	9
HR	9	5	< RL	< RL	< RL	< RL	< RL	< RL	9
HU	125	36	< RL	< RL	< RL	< RL	< RL	< RL	5
IE									
IT-N	85	21	< RL	< RL	< RL	< RL	< RL	< RL	11
IT-C	7	6				< RL	< RL	< RL	10
IT-S	121	56	< RL	< RL	< RL	< RL	< RL	1.0E-01	1
IT	213	83	< RL	< RL	< RL	< RL	< RL	< RL	6
LT									
LU	4	1		< RL	< RL	< RL	< RL	< RL	11
LV	16	4	< RL	< RL	< RL	< RL	< RL	< RL	4
мт	12	12	< RL	< RL	< RL	< RL	< RL	< RL	8
NL					ļ	ļ	L	ļ	
PL-N	6	6	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	1	1				< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	12
PL	7	7	< RL	< RL	< RL	< RL < RL		< RL	1
PT	24	2	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-N	11	3		< RL	< RL	< RL < RL		< RL	4
RO-S	87	4		< RL	< RL	< RL < RL		< RL	6
RO	98	7		< RL	< RL	< RL < RL		< RL	4
SE-N	6	3		< RL	< RL	< <i>RL</i>		< RL	4
SE-S	6	3		< RL	< RL			< RL	4
SE	12	6		< RL	< RL			< RL	4
SI	1	1		< RL			< RL	< RL	5
SK	30	5	< RL	< RL	< RL	< RL	< RL	< RL	6

RL: reporting level for $^{\rm 137}Cs$ In drinking water, i.e. 1.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

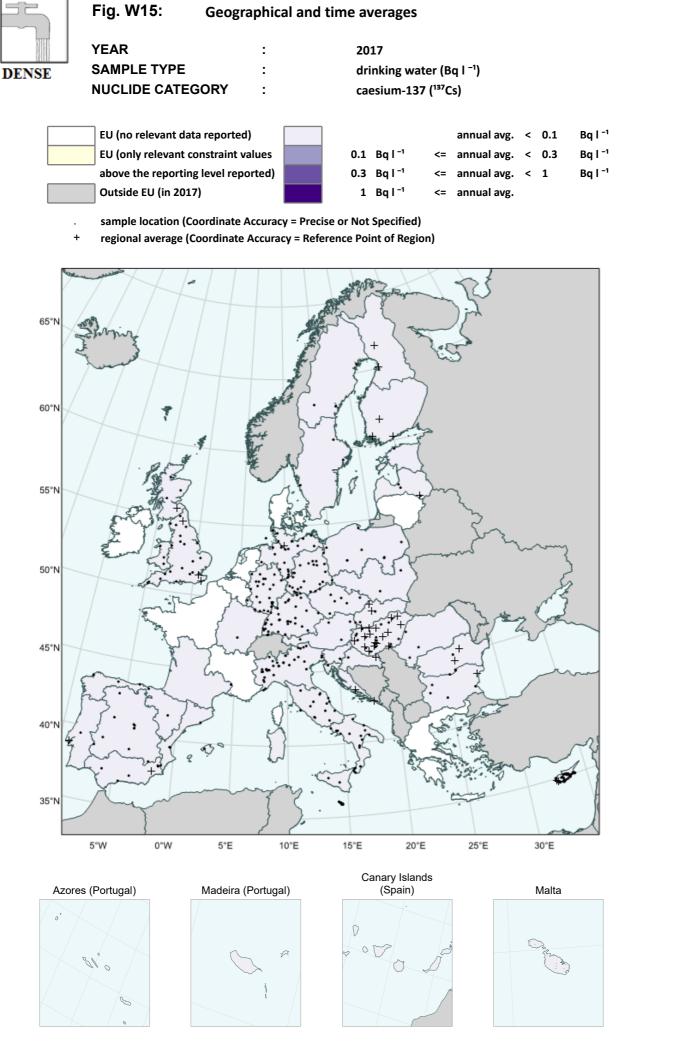


Table W15: Geographical and time averages

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

: : 2017 drinking water (Bq l⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th Annua		Monthly	М
	İ	Í	quarter	quarter	quarter	quarter	average	max	İ
AT	52	4	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	4
BE									
BG	25	6	< RL	< RL	< RL	< RL	< RL	1.2E-01	1
CY	43	43		< RL	< RL		< RL	< RL	7
CZ	61	8	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-N	67	22	< RL	< RL	< RL	< RL < RL		< RL	2
DE-C	67	23	< RL	< RL	< RL	< RL	< RL	< RL	5
DE-S	133	36	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-E	90	24	< RL	< RL	< RL	< RL	< RL	< RL	8
DE	357	105	< RL	< RL	< RL	< RL	< RL	< RL	8
DK									
EE	2	1	< RL			< RL	< RL	< RL	2
ES-N	59	5	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-C	87	10	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-S	57	8	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-E	48	4	< RL	< RL	< RL	< RL	< RL	< RL	12
ES	251	27	< RL	< RL	< RL	< RL	< RL	< RL	9
FI-N	4	2		< RL	ĺ	< RL	< RL	< RL	4
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW				1	[1			
FR-NE	1	1		< RL			< RL	< RL	5
FR-SW	6	2	< RL	< RL	< RL	< RL	< RL	< RL	4
FR-SE									
FR	7	3	< RL	< RL	< RL	< RL < RL		< RL	5
GB-EN	82	22	< RL	< RL	< RL	< RL < RL		< RL	10
GB-WL	13	4	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-SC	24	4	< RL	< RL	< RL	< RL < RL		< RL	7
GB-NI	1								
GB	119	30	< RL	< RL	< RL	< RL	< RL	< RL	7
GR									
HR-A	3	3		1	< RL	1	< RL	< RL	9
HR-C	5	2	< RL	< RL	< RL	< RL	< RL	< RL	5
HR	8	5	< RL	< RL	< RL	< RL	< RL	< RL	9
HU	106	35	< RL	< RL	< RL	< RL	< RL	< RL	6
IE									
IT-N	92	38	< RL	< RL	< RL	< RL	< RL	< RL	2
IT-C	25	14	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-S	36	20	< RL	< RL	< RL	< RL	< RL	< RL	1
ІТ	153	72	< RL	< RL	< RL	< RL	< RL	< RL	2
LT									
LU	11	1	< RL	< RL	< RL	< RL	< RL	< RL	10
LV	16	4	< RL	< RL	< RL	< RL	< RL	< RL	9
МТ	15	14	< RL	< RL	< RL	< RL	< RL	< RL	1
NL									
PL-N	8	7	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	2	2	< RL	< RL	< RL	< RL	< RL	< RL	1
PL	10	9	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	24	2	< RL	< RL	< RL	< RL	< RL	< RL	3
RO-N	13	3	< RL	< RL	< RL		< RL	< RL	4
RO-S	67	5	< RL	< RL	< RL	< RL	< RL	< RL	6
RO	80	8	< RL	< RL	< RL	< RL	< RL	< RL	4
SE-N	6	3		< RL	i i	< RL	< RL	< RL	10
SE-S	6	3		< RL		<pre> < RL</pre>		< RL	5
SE	12	6		< RL		<pre><rl <="" pre="" rl<=""></rl></pre>		< RL	5
SI	1	1	< RL					< RL	2
SK	35	5	< RL	< RL	< RL	< RL	< RL	< RL	3
5		5	- //L	-116	-116	- 112			<u> </u>

RL: reporting level for $^{\rm 137}Cs$ In drinking water, i.e. 1.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

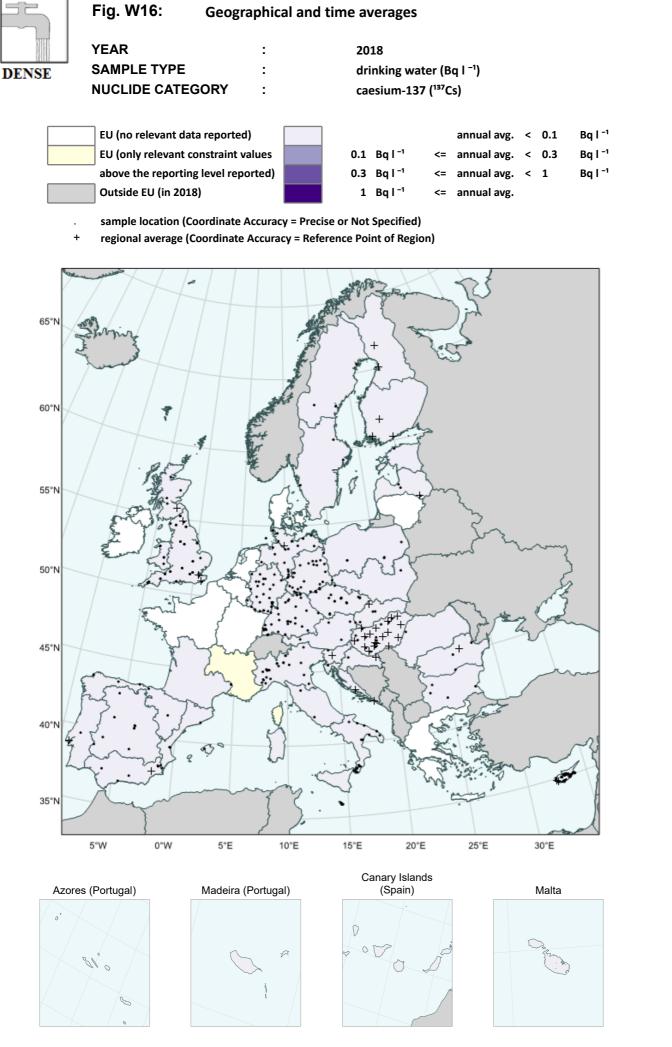


Table W16: Geographical and time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 drinking water (Bq l⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th Annua		Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	48	4	< RL	< RL	< RL	< RL	< RL	< RL	5
BE									
BG	17	4	< RL	< RL	< RL	< RL	< RL	< RL	7
CY	44	42			< RL	< RL	< RL	< RL	12
CZ	67	20	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-N	67	20	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-C	72	26	< RL	< RL	< RL	< RL	< RL	< RL	5
DE-S	122	35	< RL	< RL	< RL	< RL	< RL	< RL	8
DE-E	89	25	< RL	< RL	< RL	< RL	< RL	< RL	11
DE	350	106	< RL	< RL	< RL	< RL	< RL	< RL	2
DK									
EE	2	1	< RL			< RL	< RL	< RL	2
ES-N	61	5	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-C	87	9	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-S	58	8	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-E	49	5	< RL	< RL	< RL	< RL	< RL	< RL	12
ES	255	27	< RL	< RL	< RL	< RL	< RL	< RL	9
FI-N	2	2				< RL	< RL	< RL	10
FI-S	3	3				< RL	< RL	< RL	10
FI	5	5				< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW	2	2				< RL	< RL	< RL	10
FR-SE							Δ		
FR	2	2				< RL	< RL	< RL	10
GB-EN	82	40	< RL	< RL	< RL	< RL	< RL	< RL	10
GB-WL	10	5	< RL	< RL	< RL	< RL	< RL	< RL	7
GB-SC	26	5	< RL	< RL	< RL	< RL	< RL	< RL	8
GB-NI									
GB	118	50	< RL	< RL	< RL	< RL	< RL	< RL	2
GR				1	[1		
HR-A	3	3		< RL	[< RL	< RL	5
HR-C	5	2	< RL	< RL	< RL	< RL	< RL	< RL	9
HR	8	5	< RL	< RL	< RL	< RL	< RL	< RL	6
HU	129	31	< RL	< RL	< RL	< RL	< RL	< RL	4
IE									
IT-N	90	25	< RL	< RL	< RL	< RL	< RL	< RL	6
IT-C	13	2	< RL	< RL	< RL	< RL	< RL	< RL	8
IT-S	27	18	< RL	< RL	< RL	< RL	< RL	< RL	6
IT	130	45	< RL	< RL	< RL	< RL	< RL	< RL	7
LT									
LU	13	1	< RL	< RL	< RL	< RL	< RL	< RL	7
LV	16	4	< RL	< RL	< RL	< RL	< RL	< RL	3
MT	5	5	< RL	< RL			< RL	< RL	1
NL									
PL-N	5	4	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	1	1	< RL	< RL	< RL	< RL	< RL	< RL	12
PL	6	5	< RL	< RL	< RL	< RL < RL		< RL	1
РТ	24	2	< RL	< RL	< RL	< RL < RL		< RL	1
RO-N	10	1	< RL	< RL	< RL	< RL < RL		< RL	1
RO-S	79	4	< RL	< RL	< RL	< RL < RL		< RL	10
RO	89	5	< RL	< RL	< RL	< RL < RL		< RL	10
SE-N	6	3		< RL	< RL	< RL < RL		< RL	10
SE-S	6	3		< RL	< RL	< RL < RL		< RL	9
SE	12	6		< RL	< RL	< RL < RL < RL		< RL	9
SI	2	2	< RL	< RL				< RL	3
SK	36	5	< RL	< RL	< RL	< RL	< RL	< RL	9

RL: reporting level for $^{\rm 137}Cs$ In drinking water, i.e. 1.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

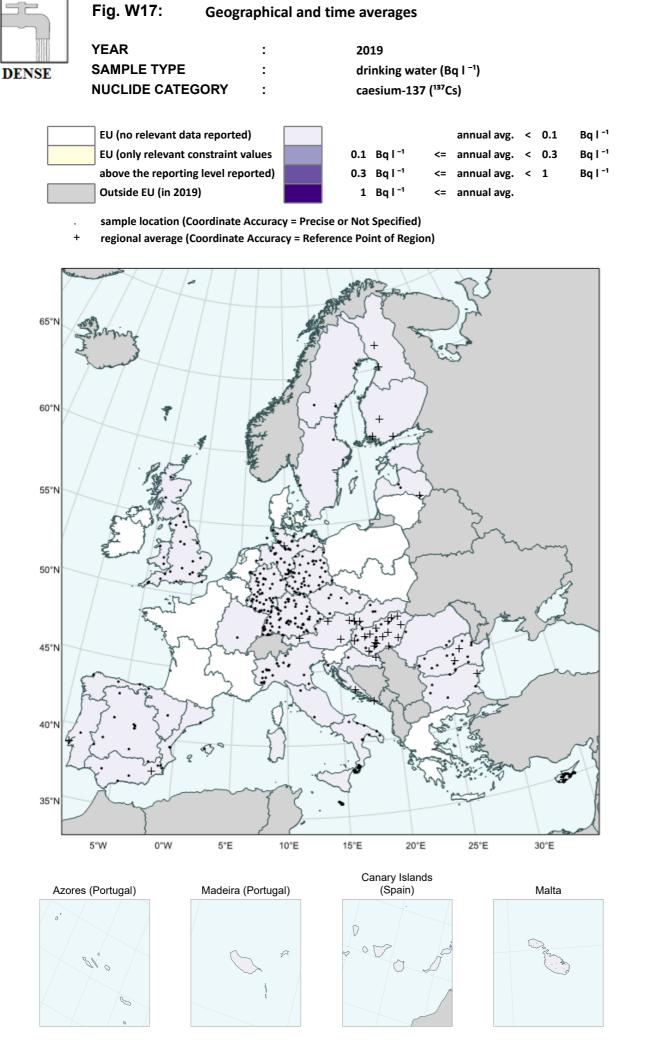
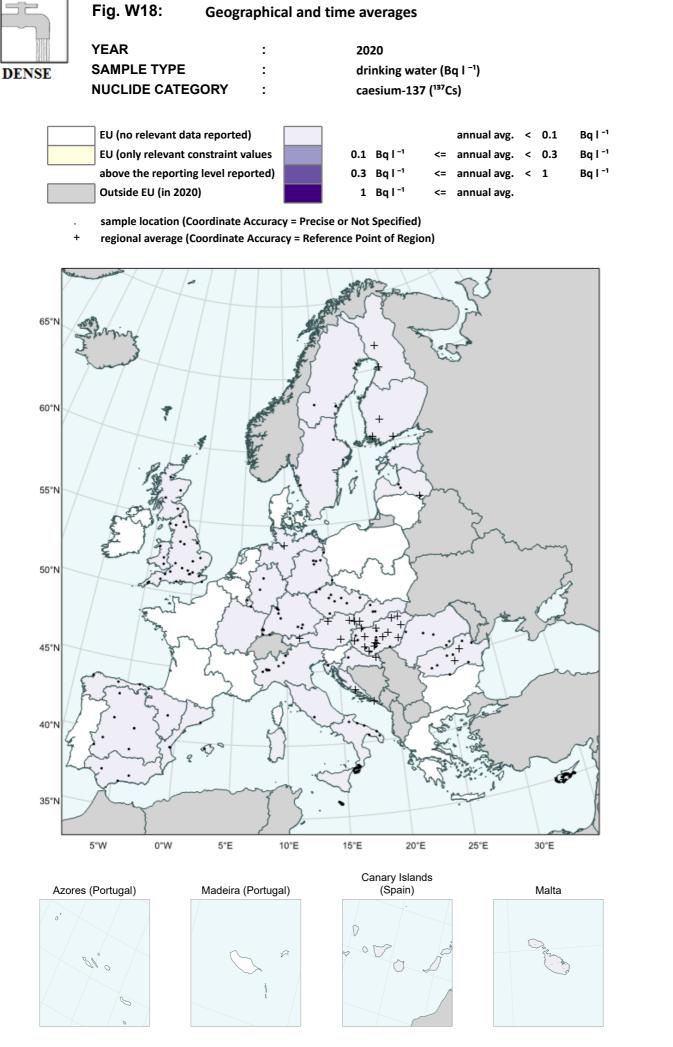


Table W17: Geographical and time averages

:

:

:



YEAR SAMPLE TYPE NUCLIDE CATEGORY

2019 drinking water (Bq l⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	48	4	< RL	< RL	< RL	< RL	< RL	< RL	6
BE									
BG	24	6	< RL	< RL	< RL	< RL	< RL	< RL	7
CY	48	34	< RL		< RL	< RL	< RL	< RL	12
CZ	28	7	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-N	157	39	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-C	134	44	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-S	364	76	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-E	137	39	< RL	< RL	< RL	< RL	< RL	< RL	11
DE	792	198	< RL	< RL	< RL	< RL	< RL	< RL	7
DK									
EE	2	1	< RL			< RL	< RL	< RL	2
ES-N	60	5	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-C	91	11	< RL	< RL	< RL	< RL	< RL	< RL	11
ES-S	56	7	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-E	49	5	< RL	< RL	< RL	< RL	< RL	< RL	12
ES	256	28	< RL	< RL	< RL	< RL	< RL	< RL	3
FI-N	2	2		< RL			< RL	< RL	4
FI-S	3	3		< RL			< RL	< RL	5
FI	5	5		< RL			< RL	< RL	5
FR-NW									
FR-NE	1	1		< RL			< RL	< RL	5
FR-SW									
FR-SE									
FR	1	1		< RL			< RL	< RL	5
GB-EN	84	21	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-WL	12	3	< RL	< RL	< RL	< RL	< RL	< RL	10
GB-SC	24	4	< RL	< RL	< RL	< RL	< RL	< RL	11
GB-NI									
GB	120	28	< RL	< RL	< RL	< RL	< RL	< RL	11
GR									
HR-A	3	3		< RL		< RL	< RL	< RL	4
HR-C	5	2	< RL	< RL	< RL	< RL	< RL	< RL	9
HR	8	5	< RL	< RL	< RL	< RL	< RL	< RL	9
HU	107	32	< RL	< RL	< RL	< RL	< RL	< RL	3
IE						1	ĺ	1	
IT-N	82	24	< RL	< RL	< RL	< RL	< RL	< RL	2
IT-C	10	2	< RL	< RL	< RL	< RL	< RL	< RL	11
IT-S	50	26	< RL	< RL	< RL	< RL	< RL	< RL	12
ІТ	142	52	< RL	< RL	< RL	< RL	< RL	< RL	10
LT									
LU	22	2	< RL	< RL	< RL	< RL	< RL	< RL	12
LV	16	4	< RL	< RL	< RL	< RL	< RL	< RL	3
мт	14	14	< RL	< RL	< RL	< RL	< RL	< RL	1
NL									
PL-N					1				
PL-S	1								
PL									
PT	24	2	< RL	< RL	< RL	<pre></pre>		< RL	8
RO-N	133	3	< RL	< RL	< RL	<pre><rl <="" pre="" rl<=""></rl></pre>		< RL	4
RO-S	77	16	< RL	< RL	< RL	< RL < RL		< RL	8
RO	210	19	< RL	< RL	< RL	<pre><rl <="" pre="" rl<=""></rl></pre>		< RL	4
SE-N	6	3		< RL	< RL			< RL	4
SE-S	6	3		< RL	< RL			< RL	10
SE	12	6		< RL	< RL			1	10
SI									
SK	33	7	< RL	< RL	< RL	< RL	< RL	< RL < RL	
		,							6

RL: reporting level for $^{\rm 137}Cs$ In drinking water, i.e. 1.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

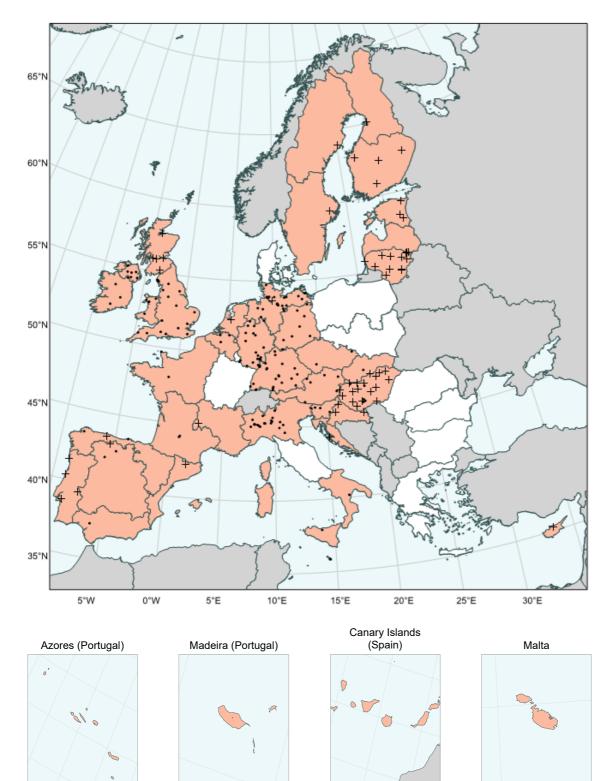
:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2020 drinking water (Bq l⁻¹) caesium-137 (¹³⁷Cs)


Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
	İ	İ	quarter	quarter	quarter	quarter	average	max	
AT	48	4	< RL	5					
BE									
BG									
CY	55	43	< RL	< RL	< RL	< RL	< RL	< RL	1
CZ	35	9	< RL	11					
DE-N	1	1	< RL				< RL	< RL	1
DE-C	2	2	< RL				< <i>RL</i>	< <i>RL</i>	1
DE-S	13	11	< RL				< RL	< RL	1
DE-E	6	6	< RL	< RL			< <i>RL</i>	< <i>RL</i>	4
DE	22	20	< RL	< RL			< RL	< RL	4
DK									
EE	2	1	< RL			< RL	< RL	< RL	3
ES-N	58	5	< RL	3					
ES-C	81	7	< RL	4					
ES-S	59	4	< <i>RL</i>	< RL	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	3
ES-E	48	4	< RL	11					
ES	246	20	< RL	< RL	< RL	< RL	< RL	< RL	2
FI-N	2	2				< RL	< RL	< RL	11
FI-S	3	3				< <i>RL</i>	< RL	< RL	10
FI	5	5				< RL	< RL	< RL	10
FR-NW									_
FR-NE	2	2			< RL		< RL	< RL	7
FR-SW									
FR-SE									_
FR	2	2			< RL		< RL	< RL	7
GB-EN	37	24	< RL	< RL		< RL	< RL	< RL	1
GB-WL	5	3	< RL			< RL	< RL	< <i>RL</i>	1
GB-SC	24	4	< RL		< RL	< RL	< RL	< RL	10
GB-NI			5						_
GB	66	31	< RL	< RL	< RL	< RL	< RL	< RL	7
GR		-		. 5/	. 51		. 5/	. 5/	0
HR-A	3	3		< RL	< RL		< RL	< RL	9
HR-C	5	2	< RL	10					
HR	8	5	< RL	< RL	< RL < RL	< RL	< RL	< RL	10
HU	69	26	< RL	< RL	< RL	< RL	< RL	< RL	12
	50	11	<i>.</i> D/	1.01	1.01	1.01	1.01	1.01	0
IT-N	56	11	< RL	< RL	< RL	< RL	< RL	< RL	2
IT-C	2	1		< RL	1.01	< RL	< RL	< RL	12
IT-S	43	28	< RL	< RL < RL	< RL	< RL	< RL	< RL	9 7
IT	101	40	< RL	< KL	< RL	< RL	< RL	< RL	7
LT	04		~ 01	< RL	< RL		< RL	< RL	1
LU	24 16	2 4	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	1 12
MT	10	4 10	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	12
NL	10	10	> KL	> KL	► KL	> RL	► KL	► KL	I
PL-N									
PL-N PL-S									
PL-5									
PL									
RO-N	70	5	< RL	5					
RO-N RO-S	63	5 10	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	5 8
RO	133	15	< RL	< RL	< RL	< RL	< RL	< RL	8
SE-N	6	3		< RL	9 5				
SE-S	6	3 6		< RL	< RL		< RL	< RL	5
SE	12	6		< RL	9				
SI				1.51	. 51		. 51	. 51	10
SK	22	5	< RL	10					

RL: reporting level for $^{\rm 137}Cs$ In drinking water, i.e. 1.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

	Fig. M1:	Geographica	al and	time av	/erages					
DENSE	YEAR SAMPLE TYPE NUCLIDE CATEO	: : GORY :		2015 milk (Bq l ^{–1}) strontium-90 (⁹⁰ Sr)						
[EU (no relevant dat						annual avg.			Bq I ⁻¹
l	EU (only relevant o	onstraint values			Bq I ⁻¹	<=	annual avg.	<	0.6	Bq I ⁻¹
	above the reporting	g level reported)		0.6	Bq I ⁻¹	<=	annual avg.	<	2	Bq I ⁻¹
	Outside EU (in 201	5)		2	Bql ^{−1}	<=	annual avg.			

sample location (Coordinate Accuracy = Precise or Not Specified)

+ regional average (Coordinate Accuracy = Reference Point of Region)

Table M1: Geographical and time averages

YEAR	:	
SAMPLE TYPE	:	
NUCLIDE CATEGORY	:	

2015 milk (Bq l⁻¹) strontium-90 (⁹⁰Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
		Í	quarter	quarter	quarter	quarter	average	max	
AT	25	7	< RL	< RL	< RL	< RL	< RL	< RL	6
BE	42	3	< RL	< RL	< RL	< RL	< RL	< RL	1
BG									
CY	6	1		1	< RL	< RL	< RL	< RL	7
CZ	5	2	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-N	110	24	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-C	63	20	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-S	74	23	< RL	< RL	< RL	< RL < RL < RL		< RL	4
DE-E	67	7	< RL	< RL	< RL	< RL	< RL	< RL	1
DE	314	74	< RL	< RL	< RL	< RL	< RL	< RL	11
DK									
EE	12	3	< RL	< RL	< RL < RL < RL		< RL	10	
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-C	12	3	< RL	< RL	< RL	< RL < RL < RL		< RL	5
ES-S	12	1	< RL	< RL	< RL	< RL < RL < RL		< RL	1
ES-E	12	1	< RL	< RL	< RL	< RL < RL < RL		< RL	12
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	8
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	4
FI	20	5	< RL	< RL	< RL	< RL	< RL	< RL	4
FR-NW	13	2		< RL	< RL	< RL	< RL	< RL	9
FR-NE									
FR-SW	2	2		< RL		< RL	< RL	< RL	6
FR-SE	1	1				< RL	< RL	< RL	11
FR	16	5		< RL	< RL	< RL	< RL	< RL	9
GB-EN	202	27	< RL	< RL	< RL	< RL	< RL	< RL	11
GB-WL	44	5	< RL	< RL	< RL	< RL	< RL	< RL	10
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	12
GB-NI	73	6	< RL	< RL	< RL	< RL	< RL	< RL	10
GB	347	43	< RL	< RL	< RL	< RL < RL < RL		< RL	10
GR									
HR-A	5	1	< RL	< RL	< RL	< RL	< RL	< RL	7
HR-C	23	3	< <i>RL</i>	< RL	< RL	< RL	< RL	< <i>RL</i>	9
HR	28	4	< RL	< RL	< RL	< RL	< RL	< RL	9
HU	227	23	< RL	< RL	< RL	< RL	< RL	< RL	10
IE	16	4	< RL	< RL	< RL	< RL	< RL	< RL	2
IT-N	55	20	< RL	< RL	< RL	< RL	< RL	< RL	9
IT-C IT-S	_		. 5/		. 5/		. 54		10
	5 60	2	< RL	< RL	< RL	< RL	< RL	< RL	12 10
IT		22 12	< RL	< RL < RL	< RL < RL	< RL	< RL < RL	< RL < RL	10
LT LU	44	12	< RL	< RL	< RL	< RL	< RL	< RL	1
LV	8	2	< RL				< RL	< RL	1
MT	4	2	< RL < RL	< RL	< <i>RL</i>	< RL	< RL < RL	< RL < RL	3
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N	12	,	- NE	STIL	- TIL	STIL	- TIL	- TIL	,
PL-S									
PL									
PT	36	7	< RL	< RL			< RL	< RL	2
RO-N		· ·						,	-
RO-S									
RO									
SE-N	3	1		< RL	< RL	<pre></pre>		< RL	9
SE-S	3	1		< RL	< RL	< RL	< RL	< <i>RL</i>	8
SE	6	2		< RL	< RL	< RL	< RL	< RL	9
SI	34	4	< RL	< RL	< RL	< RL	< RL	< RL	10
SK	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1

RL: reporting level for ^{90}Sr In milk, i.e. 2.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Fig. M2:	Geographic	al and	time av	/erages						
YEAR SAMPLE TYPE NUCLIDE CATEG	: : ORY :		mi	lk (Bq l ⁻¹	-	r)				
EU (only relevant con above the reporting	nstraint values level reported)		0.6	Bq I ⁻¹	<=	annual avg. annual avg.	<	0.6	Bq ⁻¹ Bq ⁻¹ Bq ⁻¹	
	YEAR SAMPLE TYPE NUCLIDE CATEG EU (no relevant data EU (only relevant con above the reporting	YEAR :	YEAR : SAMPLE TYPE : NUCLIDE CATEGORY : EU (no relevant data reported) EU (only relevant constraint values above the reporting level reported)	YEAR : 20 SAMPLE TYPE : mi NUCLIDE CATEGORY : str EU (no relevant data reported) EU (only relevant constraint values above the reporting level reported) 0.2	YEAR : 2016 SAMPLE TYPE : milk (Bq I ⁻¹) NUCLIDE CATEGORY : strontium-5 EU (no relevant data reported) . . EU (no relevant data reported) . 0.2 Bq I ⁻¹ above the reporting level reported) . 0.6 Bq I ⁻¹	YEAR : 2016 SAMPLE TYPE : milk (Bq I ⁻¹) NUCLIDE CATEGORY : strontium-90 (⁹⁰ S) EU (no relevant data reported) . . EU (no relevant data reported) . 0.2 Bq I ⁻¹ <= above the reporting level reported) . 0.6 Bq I ⁻¹ <=	YEAR : 2016 SAMPLE TYPE : milk (Bq I ⁻¹) NUCLIDE CATEGORY : strontium-90 (⁹⁰ Sr) EU (no relevant data reported) annual avg. EU (no relevant constraint values above the reporting level reported) 0.2 Bq I ⁻¹ <= annual avg.	YEAR : 2016 SAMPLE TYPE : milk (Bq I ⁻¹) NUCLIDE CATEGORY : strontium-90 (⁹⁰ Sr) EU (no relevant data reported) annual avg. < EU (no relevant data reported) 0.2 Bq I ⁻¹ <= annual avg. < above the reporting level reported) 0.6 Bq I ⁻¹ <= annual avg. <	YEAR : 2016 SAMPLE TYPE : milk (Bq I ⁻¹) NUCLIDE CATEGORY : strontium-90 (⁹⁰ Sr) EU (no relevant data reported) EU (no relevant data reported) EU (only relevant constraint values above the reporting level reported) 0.2 Bq I ⁻¹ <= annual avg. < 0.2 0.6 Bq I ⁻¹ <= annual avg. < 2	YEAR : 2016 SAMPLE TYPE : milk (Bq I ⁻¹) NUCLIDE CATEGORY : strontium-90 (⁹⁰ Sr) EU (no relevant data reported) annual avg. < 0.2 Bq I ⁻¹ EU (no relevant constraint values above the reporting level reported) 0.2 Bq I ⁻¹ <= annual avg. < 0.6 Bq I ⁻¹

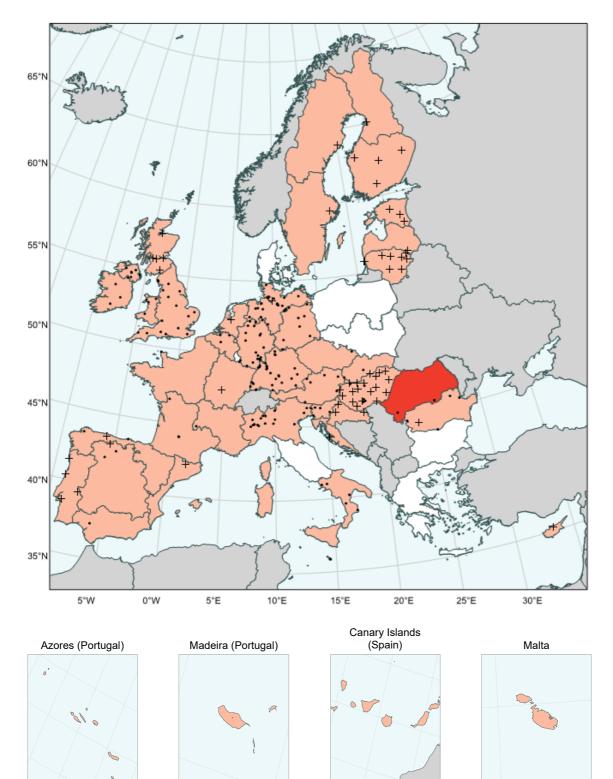
sample location (Coordinate Accuracy = Precise or Not Specified)

+ regional average (Coordinate Accuracy = Reference Point of Region)

Table M2: Geographical and time averages

YEAR	:	2016
SAMPLE TYPE	:	milk (Bq l ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

Country	N	L	1st	2nd	3rd	4th Annual		Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	25	7	< RL	< RL	< RL	< RL	< RL	< RL	7
BE	42	3	< RL	< RL	< RL	< RL	< RL	< RL	5
BG									
СҮ	6	1		< RL		< RL	< RL	< RL	6
CZ	4	1	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-N	119	28	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-C	71	20	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-S	71	23	< RL	< RL	< RL	< RL	< RL	< RL	3
DE-E	54	6	< RL	< RL	< RL	< RL	< RL	< RL	3
DE	315	77	< RL	< RL	< RL	< RL < RL < RL		< RL	3
DK									
EE	12	3	< RL	< RL	< RL	RL < RL < RL		< RL	2
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-C	12	3	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	9
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	10
FI-S	16	4	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	7
FI	20	5	< RL	< RL	< RL	< RL	< RL	< RL	7
FR-NW	5	5			< RL	< RL	< RL	< RL	10
FR-NE									
FR-SW	3	2		< RL	< RL	< RL	< RL	< RL	11
FR-SE	1	1				< RL	< RL	< RL	10
FR	9	8		< RL	< RL	< RL	< RL	< RL	10
GB-EN	202	28	< RL	< RL	< RL	< RL	< RL	< RL	7
GB-WL	43	5	< RL	< RL	< RL	< RL	< RL	< RL	12
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	7
GB-NI	71	7	< RL	< RL	< RL	< RL	< RL	< RL < RL	8
GB	344	45	< RL	< RL	< RL	< RL	< RL < RL		7
GR									
HR-A	7	1	< RL	< RL	< RL	< RL	< RL	< RL	3
HR-C	27	3	< RL	< RL	< RL	< RL	< RL	< RL	12
HR	34	4	< RL	< RL	< RL	< RL	< RL	< RL	12
HU	230	24	< RL	< RL	< RL	< RL	< RL	< RL	5
IE	16	4	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-N	57	19	< RL	< RL	< RL	< RL	< RL	< RL	7
IT-C									
IT-S	4	2	< RL	< RL	< RL	< RL	< RL	< RL	10
IT	61	21	< RL	< RL	< RL	< RL	< RL	< RL	7
LT	43	10	< RL	< RL	< RL	< RL	< RL	< RL	4
LU							A		
LV							Δ		2
MT	4	2	< RL	< RL	< RL	< RL	< RL	< RL	3
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N									
PL-S PL									
PL PT	36	2	< RL	< RL	< RL	< RL	< RL	< RL	4
RO-N	36	6 2	< r.L	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	4
RO-N RO-S	8	2 5	< RL	< RL < RL			< RL < RL		
RO-S RO	10	5	< RL < RL	< RL < RL	< RL < RL	< RL < RL < RL < RL < RL			11 1
SE-N	4	1	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL		1 9
SE-N SE-S	4	1	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	9 11
SE-S	8	2	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	2
SE SI	33	4	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	2
SK	16	4	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	2
UN	10	2	> KL		> KL				2


RL: reporting level for ^{90}Sr In milk, i.e. 2.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

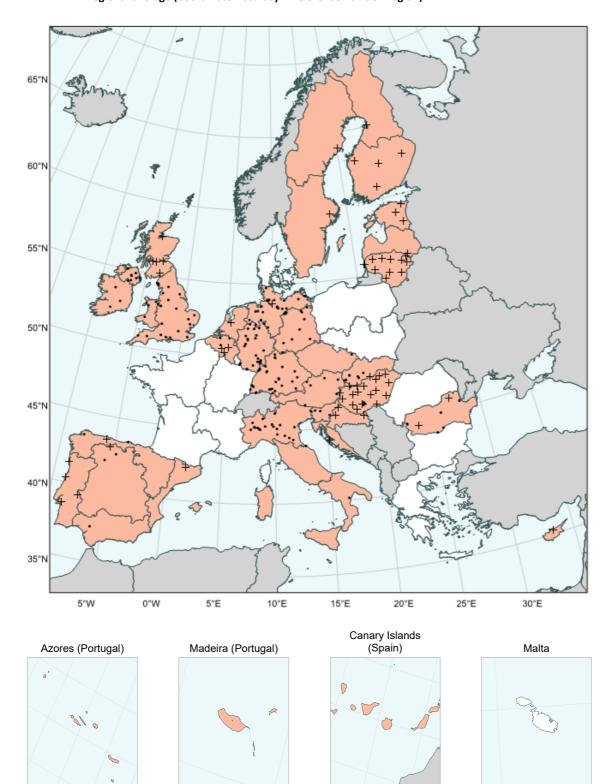
	Fig. M3:	Fig. M3: Geographical and time averages										
$\square \square $	YEAR SAMPLE TYPE	:	:		2017 milk (Ba L ⁻¹)							
DENSE	NUCLIDE CATEG					-						
	EU (no relevant data	_		50			annual avg.	<	0.2	Bq l ⁻¹		
	EU (only relevant co	nstraint values		0.2	Bq I ⁻¹	<=	annual avg.	<	0.6	Bq I ⁻¹		
	above the reporting	level reported)		0.6	Bq I ⁻¹	<=	annual avg.	<	2	Bq I ⁻¹		
	Outside EU (in 2017)			2	Bq I ⁻¹	<=	annual avg.					

sample location (Coordinate Accuracy = Precise or Not Specified)

+ regional average (Coordinate Accuracy = Reference Point of Region)

Table M3: Geographical and time averages

YEAR	:	2017
SAMPLE TYPE	:	milk (Bq l ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)


AT 26 7 < RL	onthly M max < RL 6 < RL 1 < RL 1 < RL 10 < RL 10 < RL 10 < RL 3 < RL 3 < RL 3 < RL 3 < RL 10 < RL 3 < RL 10 < RL 8 < RL 10 < RL 11
AT 26 7 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ <th< th=""><th>< RL 6 < RL 4 < RL 10 < RL 10 < RL 8 < RL 9 < RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 10</th></th<>	< RL 6 < RL 4 < RL 10 < RL 10 < RL 8 < RL 9 < RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 8 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10
BG Image: CY 6 1 <rl< th=""> <rl< th=""></rl<></rl<>	< RL 1 < RL 10 < RL 8 < RL 9 < RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10
CY 6 1 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ CZ 4 1 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ <th< th=""><th>< RL 10 < RL 8 < RL 9 < RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10</th></th<>	< RL 10 < RL 8 < RL 9 < RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10
CZ 4 1 $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< RL$ $< R$	< RL 10 < RL 8 < RL 9 < RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< RL 8 < RL 9 < RL 3 < RL 10 < RL 10 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< RL 8 < RL 9 < RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10
DE-C 60 20 < RL h=""><th>< RL 9 < RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10</th></td<>	< RL 9 < RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10
DE-S 75 26 < RL	< RL 3 < RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10
DE-E 57 7 < RL	< RL 10 < RL 3 < RL 11 < RL 8 < RL 8 < RL 8 < RL 10 < RL 10 < RL 8 < RL 10
DE 303 78 < RL	< RL 3 < RL 111 < RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 10 < RL 1
DK Image: Constraint of the system Constraint of the syst	< RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 1
ES-N 36 3 < RL	< RL 8 < RL 8 < RL 8 < RL 10 < RL 8 < RL 1
ES-C 12 3 < RL < < RL	< RL 8 < RL 8 < RL 10 < RL 8 < RL 1
ES-S 12 1 < RL	< RL 8 < RL 10 < RL 8 < RL 1
ES-S 12 1 < RL	< RL 8 < RL 10 < RL 8 < RL 1
ES-E 12 1 < RL	< RL 10 < RL 8 < RL 1
ES 72 8 < RL < RL < RL < RL < RL	< RL 8 < RL 1
	< RL 1
FI-S 16 4 < RL	< RL 1
FI 20 5 < <i>RL</i> < <i>RL</i> < <i>RL</i> < <i>RL</i> < <i>RL</i>	< RL 1
FR-NW 6 1 < RL	< RL 7
FR-NE 1 1 < <i>RL</i> < <i>RL</i>	< RL 6
FR-SW 3 3 < < <i>RL</i> < <i>RL</i> < <i>RL</i> < <i>RL</i>	< RL 11
FR-SE 1 1 < <i>RL</i> < <i>RL</i>	< RL 6
FR 11 6 < <i>RL</i> < <i>RL</i> < <i>RL</i> < <i>RL</i>	< RL 6
GB-EN 193 20 < RL < RL < RL < RL < RL	< RL 10
GB-WL 44 4 < RL < RL < RL < RL < RL	< RL 7
GB-SC 28 5 < RL < RL < RL < RL < RL	< RL 2
GB-NI 72 6 < RL < RL < RL < RL < RL	< RL 9
GB 337 35 < RL < RL < RL < RL < RL	< RL 2
GR GR	
HR-A 7 1 < RL < RL < RL < RL < RL	< RL 12
HR-C 27 3 < RL < RL < RL < RL < RL	< RL 4
HR 34 4 < RL < RL < RL < RL < RL	< RL 2
HU 241 24 < RL < RL < RL < RL < RL	< RL 4
IE 16 4 < RL < RL < RL < RL < RL	< RL 11
IT-N 60 18 < RL < RL < RL < RL < RL	< RL 12
IT-C	
IT-S 6 5 < RL < RL < RL < RL	< RL 1
IT 66 23 < RL < RL < RL < RL < RL	< RL 12
LT 44 12 < RL < RL < RL < RL < RL	< RL 1
LV 8 1 < RL < RL < RL < RL < RL	< RL 3
MT 3 1 < RL < RL < RL < RL	< RL 7
NL 12 1 < RL < RL < RL < RL < RL	< RL 1
PL-N I I I I I I I I I I I I I I I I I I I	
PL-S	
PL I I I I I I I I I I I I I I I I I I I	
PT 35 6 < RL < RL < RL < RL < RL	< RL 9
RO-N 2 2 < RL	.2E+00 12
RO-S 7 5 < RL < RL < RL < RL < RL	< RL 3
RO 9 7 < RL < RL < RL 2.9E-01 < RL 5	5.3E-01 12
SE-N 4 1 < RL < RL < RL < RL < RL	< RL 8
SE-S 4 1 < RL < RL < RL < RL < RL	< RL 1
SE 8 2 < RL < RL < RL < RL < RL	< RL 1
SI 33 4 < RL < RL < RL < RL < RL	< RL 2
SK 16 2 < RL	< RL 5

RL: reporting level for ^{90}Sr In milk, i.e. 2.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

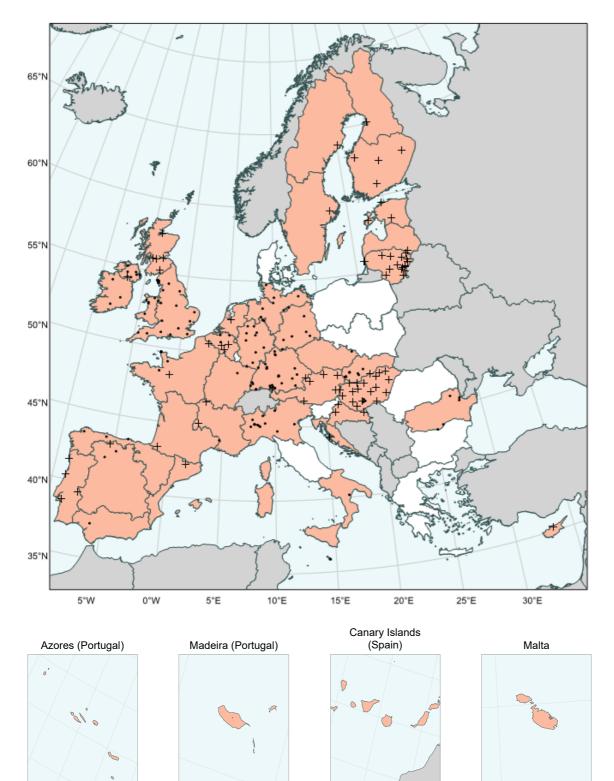
	Fig. M4:	Geographical and time averages									
DENSE	YEAR SAMPLE TYPE NUCLIDE CATEG	: CRY :	mi	2018 milk (Bq l ^{–1}) strontium-90 (⁹⁰ Sr)							
	EU (no relevant data EU (only relevant con above the reporting Outside EU (in 2018) . sample location (Con	nstraint values level reported) ordinate Accuracy	0.6 2 7 = Precise or Not	•	<= <=)	annual avg. annual avg. annual avg. annual avg.	<	0.6	Bq −1 Bq −1 Bq −1		

+ regional average (Coordinate Accuracy = Reference Point of Region)

Table M4: Geographical and time averages

YEAR	:	2018
SAMPLE TYPE	:	milk (Bq l ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	19	7	< RL	< RL	< RL	< RL	< RL	< RL	11
BE	81	6	< RL	< RL	< RL	< RL	< RL	< RL	10
BG									
CY	3	1			< RL	< RL	< RL	< RL	7
CZ	4	1	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-N	108	28	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-C	68	24	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-S	78	27	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-E	59	8	< RL	< RL	< RL	< RL	< RL	< RL	1
DE	313	87	< RL	< RL	< RL	< RL	< RL	< RL	1
DK									
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-C	12	3	< RL	< RL	< RL	< RL	< RL	< RL	11
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	12
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	10
FI-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	10
FI	20	5	< RL	< RL	< RL	< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	208	29	< RL	< RL	< RL	< RL	< RL	< RL	7
GB-WL	43	5	< RL	< RL	< RL	< RL	< RL	< RL	8
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-NI	72	7	< RL	< RL	< RL	< RL	< RL	< RL	10
GB	351	46	< RL	< RL	< RL	< RL	< RL	< RL	9
GR									
HR-A	5	1	< RL	< RL	< RL	< RL	< RL	< RL	9
HR-C	24	3	< RL	< RL	< RL	< RL	< RL	< RL	1
HR	29	4	< RL	< RL	< RL	< RL	< RL	< RL	1
HU	224	23	< RL	< RL	< RL	< RL	< RL	< RL	7
IE	16	4	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-N	64	20	< RL	< RL	< RL	< RL	< RL	< RL	9
IT-C	1	1			< RL		< RL	< RL	9
IT-S	6	1	< RL	< RL	< RL	< RL	< RL	< RL	1
п	71	22	< RL	< RL	< RL	< RL	< RL	< RL	10
LT	45	13	< RL	< RL	< RL	< RL	< RL	< RL	1
LU									
LV	8	1	< RL				< RL	< RL	1
МТ									
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N									
PL-S									
PL									
PT	36	6	< RL	< RL	< RL	< RL	< RL	< RL	11
RO-N									
RO-S	12	7	< RL	< RL	< RL		< RL	< RL	9
RO	12	7	< RL	< RL	< RL		< RL	< RL	9
SE-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
SE-S	4	1	< RL	< RL	< RL	< RL	< RL	< RL	5
SE	8	2	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	1
SI	30	4	< RL	< RL	< RL	< RL	< RL	< RL	12
SK	29	7	< RL	< RL	< RL	< RL	< RL	< RL	11
	23	,	· / \L						


RL: reporting level for ^{90}Sr In milk, i.e. 2.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

DENSE	Fig. M5:	Geographical	and time av	/erages						
	YEAR SAMPLE TYPE	:	20 mi	19 lk (Bq l ⁻¹)						
	NUCLIDE CATEO	GORY :	str	ontium-90	(°°S	r)				
Г	EU (no relevant dat	a reported)				annual avg.	<	0.2	Bq I ⁻¹	
	EU (only relevant co	• •	0.2	Bq I ⁻¹	<=	annual avg.			Bq I ⁻¹	
	above the reporting	; level reported)	0.6	Bq I ⁻¹	<=	annual avg.	<	2	Bq I ⁻¹	
	Outside EU (in 2019)	2	Bq I ⁻¹	<=	annual avg.				

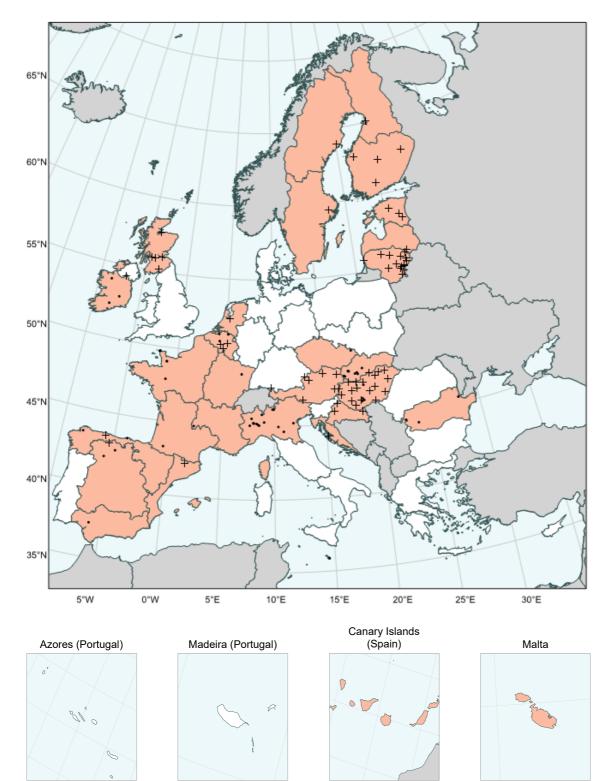
. sample location (Coordinate Accuracy = Precise or Not Specified)

+ regional average (Coordinate Accuracy = Reference Point of Region)

Table M5: Geographical and time averages

YEAR	:	2019
SAMPLE TYPE	:	milk (Bq l ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	м
Country	IN	-	quarter	quarter	quarter	quarter	average	max	141
AT	19	7	< RL	< RL	< RL	< RL	< RL	< <i>RL</i>	9
BE	79	6	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	6
BG									
CY	3	1	< RL	< RL			< RL	< RL	3
CZ	4	1	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-N	64	7	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-C	47	13	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-S	73	26	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-E	56	6	< RL	< RL	< RL	< RL	< RL	< RL	8
DE	240	52	< RL	< RL	< RL	< RL	< RL	< RL	10
DK									
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-C	12	3	< RL	< RL	< RL	< RL	< RL	< RL	4
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	12
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-S	16	4	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	1
FI	20	5	< RL	< RL	< RL	< RL	< RL	< RL	1
FR-NW	13	13	< RL	< RL	< RL	< RL	< RL	< RL	3
FR-NE	1	1			< RL		< RL	< RL	9
FR-SW	2	2		< RL			< RL	< RL	6
FR-SE	2	2		< RL			< RL	< RL	6
FR	18	18	< RL	< RL	< RL	< RL	< RL	< RL	6
GB-EN	201	28	< RL	< RL	< RL	< RL	< RL	< RL	12
GB-WL	43	6	< RL	< RL	< RL	< RL	< RL	< RL	12
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	6
GB-NI	71	6	< RL	< RL	< RL	< RL	< RL	< RL	12
GB	343	45	< RL	< RL	< RL	< RL	< RL	< RL	12
GR									
HR-A	6	1	< RL	< RL	< RL	< RL	< RL	< RL	1
HR-C	24	3	< RL	< RL	< RL	< RL	< RL	< RL	3
HR	30	4	< RL	< RL	< RL	< RL	< RL	< RL	3
HU	170	22	< RL	< RL	< RL	< RL	< RL	< RL	9
IE	14	4	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-N	39	13	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-C									
IT-S	3	1	< RL	< RL	< RL	< RL	< RL	< RL	4
IT	42	14	< RL	< RL	< RL	< RL	< RL	< RL	10
LT	69	19	< RL	< RL	< RL	< RL	< RL	< RL	11
LU									
LV	9	1	< RL			< RL	< RL	< RL	11
MT	8	1	< RL	< RL	< RL	< RL	< RL	< RL	3
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N									
PL-S									
PL	L								
PT	33	6	< RL	< RL	< RL	< RL	< RL	< RL	11
RO-N	_		. 51						
RO-S	7	5	< RL	< <i>RL</i>	< RL		< <i>RL</i>	< RL	3
RO	7	5	< RL	< RL	< RL		< RL	< RL	3
SE-N	2	1	< RL	< RL			< RL	< RL	1
SE-S	2	1	< RL	< RL			< <i>RL</i>	< RL	1
SE	4	2	< RL	< RL			< RL	< RL	1
SI									
SK	23	9	< RL	< RL	< RL	< RL	< RL	< RL	8


RL: reporting level for ^{90}Sr In milk, i.e. 2.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

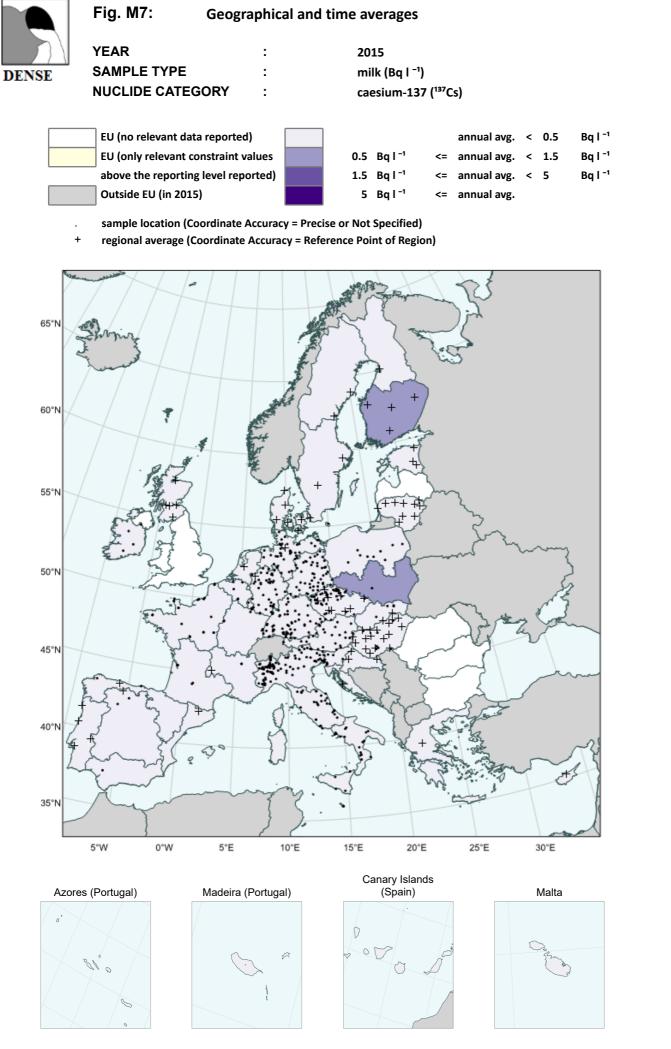
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

	Fig. M6:	Geographica	al and	time av	verages						
	YEAR	:		20	20						
DENSE	SAMPLE TYPE	PLE TYPE :			milk (Bq l ⁻¹)						
	NUCLIDE CATEO	GORY :		str	ontium-9	90 (⁹⁰ S	r)				
Γ	EU (no relevant dat	a reported)					annual avg.	<	0.2	Bq I ⁻¹	
	EU (only relevant co	onstraint values		0.2	Bq I ⁻¹	<=	annual avg.	<	0.6	Bq I ⁻¹	
	above the reporting	g level reported)		0.6	Bq I ⁻¹	<=	annual avg.	<	2	Bq I ⁻¹	
	Outside EU (in 2020))		2	Bq I ⁻¹	<=	annual avg.				
	sample location (Co	ordinate Accuracy	v = Preci	ise or Not	Specified	۱					

sample location (Coordinate Accuracy = Precise or Not Specified)

+ regional average (Coordinate Accuracy = Reference Point of Region)

Table M6: Geographical and time averages



YEAR	:	2020
SAMPLE TYPE	:	milk (Bq l ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

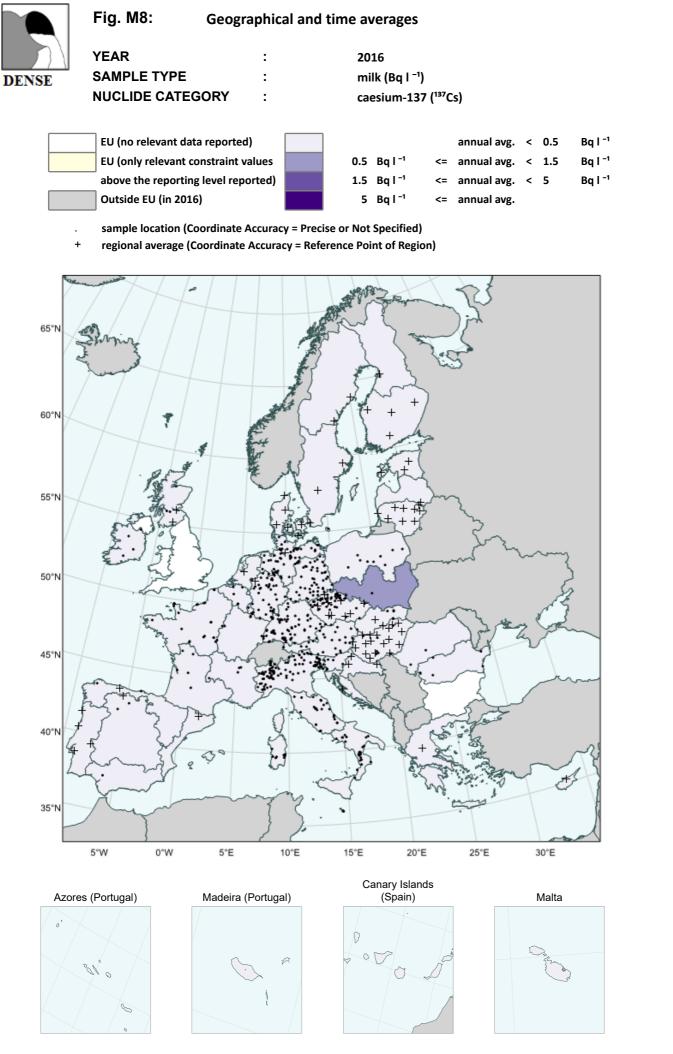
Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	19	7	< RL	< RL	< RL	< RL	< RL	< RL	10
BE	163	6	< RL	< RL	< RL	< RL	< RL	< RL	3
BG						1			
СҮ									
CZ	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N						1			
DE-C									
DE-S									
DE-E									
DE									
DK									
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-C	10	3	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-S	11	1	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	5
ES	69	8	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	7
FI	20	5	< RL	< RL	< RL	< RL	< RL	< RL	7
FR-NW	7	6			< RL	< RL	< RL	< RL	7
FR-NE	1	1				< RL	< RL	< RL	10
FR-SW	1	1			< RL		< RL	< RL	9
FR-SE	1	1			< RL		< RL	< RL	7
FR	10	9			< RL	< RL	< RL	< RL	7
GB-EN									
GB-WL									
GB-SC	26	5	< RL	< RL	< RL	< RL	< RL	< RL	9
GB-NI									
GB	26	5	< RL	< RL	< RL	< RL	< RL	< RL	9
GR									
HR-A	6	1	< RL	< RL	< RL	< RL	< RL	< RL	2
HR-C	24	3	< RL	< RL	< RL	< RL	< RL	< RL	11
HR	30	4	< RL	< RL	< RL	< RL	< RL	< RL	11
HU	100	23	< RL	< RL	< RL	< RL	< RL	< RL	1
IE	16	4	< RL	< RL	< RL	< RL	< RL	< RL	6
IT-N	39	15	< RL	< RL	< RL	< RL	< RL	2.0E-01	5
IT-C									
IT-S									
IT	39	15	< RL	< RL	< RL	< RL	< RL	2.0E-01	5
LT	62	15	< RL	< RL	< RL	< RL	< RL	< RL	12
LU									
LV	3	1	< RL	. 51		. 51	< RL	< RL	1
MT	2	1		< RL		< RL	< RL	< RL	6
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N									
PL-S									
PL									
PT									
RO-N			. 5/						~
RO-S	4	3	< RL	< RL	< RL	< RL	< RL	< RL	2
RO	4	3	< RL	< RL	< RL	< RL	< RL	< RL	2
SE-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	9
SE-S	4	1	< RL	< RL	< RL	< RL	< RL	< RL	8
SE	8	2	< RL	< RL	< RL	< RL	< RL	< RL	8
SI SK	20	0		< RL	< RL		< RL		10
3N	38	9	< RL		S RL	< RL		< RL	12

RL: reporting level for 90 Sr In milk, i.e. 2.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table M7: Geographical and time averages

:


YEAR SAMPLE TYPE NUCLIDE CATEGORY

: : milk (Bq l⁻¹) caesium-137 (¹³⁷Cs)

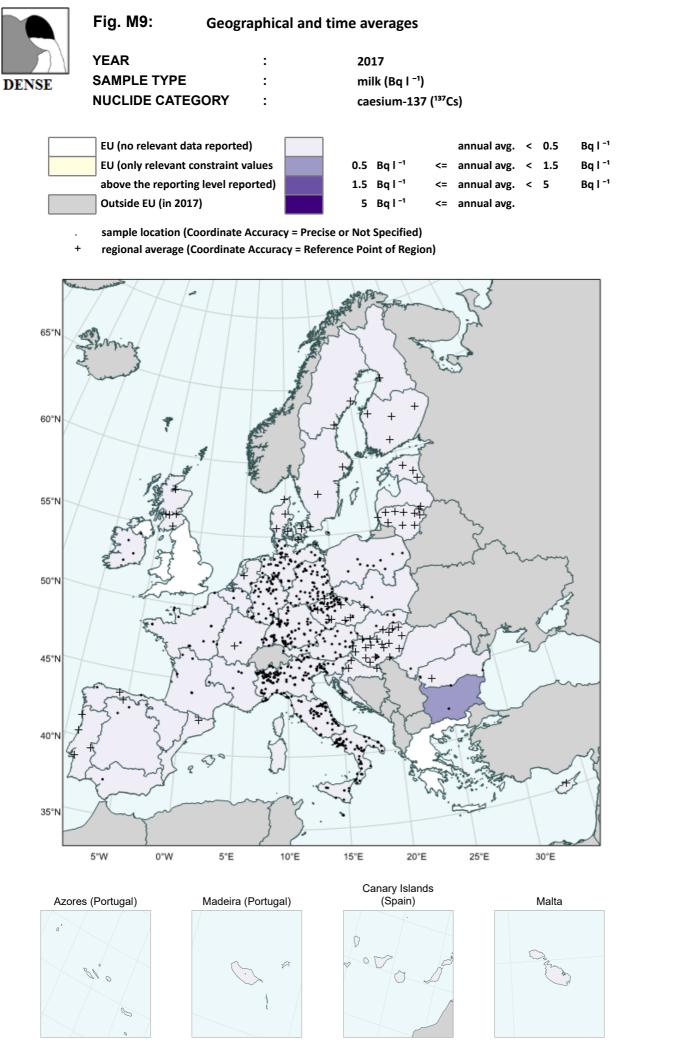
2015

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
		Í	quarter	quarter	quarter	quarter	average	max	
AT	179	28	< RL	8					
BE	159	3	< RL	5					
BG									
СҮ	6	1			< RL	< RL	< RL	< RL	7
CZ	124	53	< RL	5					
DE-N	341	40	< RL	6					
DE-C	234	42	< RL	4					
DE-S	324	57	< RL	11					
DE-E	288	46	< RL	4					
DE	1187	185	< RL	< RL	< RL	< RL	< RL	< RL	4
DK	34	7	< RL		< RL	< RL	< RL	< RL	1
EE	12	3	< RL	7					
ES-N	36	3	< RL	7					
ES-C	12	3	< RL	10					
ES-S	12	1	< RL	5					
ES-E	12	1	< RL	3					
ES	72	8	< RL	7					
FI-N	12	1	< RL	6					
FI-S	48	4	6.1E-01	5.4E-01	< RL	5.2E-01	5.4E-01	7.5E-01	2
FI	60	5	5.5E-01	< RL	< RL	< RL	< RL	6.6E-01	2
FR-NW	35	21	< RL	7					
FR-NE	8	8		< RL	6				
FR-SW	4	4		< RL		< RL	< RL	< RL	6
FR-SE	3	3	< RL			< RL	< RL	< RL	11
FR	50	36	< RL	7					
GB-EN									
GB-WL									
GB-SC	28	5	< RL	7					
GB-NI									
GB	28	5	< RL	7					
GR	12	1	< RL	1					
HR-A	6	1	< RL	4					
HR-C	26	3	< RL	< RL	< RL	< RL	< <i>RL</i>	< RL	1
HR	32	4	< RL	1					
HU	278	25	< RL	3					
IE	23	4	< RL	4					
IT-N	421	101	< RL	< RL	< RL	< RL	< RL	< RL	8
IT-C IT-S	108 103	28 21	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	1 10
IT	632	150	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	8
LT	45	130	< RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	0 11
LU	35	3	< RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	4
LV			S NL	SINL	SIL	SIL	SIL	SINL	4
MT	4	1	< RL	< <i>RL</i>	< RL	< <i>RL</i>	< RL	< RL	6
NL	12	1	< RL	1					
PL-N	12	9	< RL	< RL	< RL < RL	< RL	< RL < RL	< RL	1
PL-S	2	1	5.5E-01	5.5E-01	5.5E-01	5.5E-01	5.5E-01	5.5E-01	12
PL	20	10	< RL	1					
PT	36	7	< RL	4					
RO-N									
RO-S									
RO									
SE-N	8	2	< RL	10					
SE-S	12	3	< RL	6					
SE	20	5	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	6
SI	34	4	< RL	9					
SK	27	5	< RL	1					
		-							•

RL: reporting level for ¹³⁷Cs In milk, i.e. 5.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table M8: Geographical and time averages

:



YEAR SAMPLE TYPE NUCLIDE CATEGORY

: : 2016 milk (Bq l⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	м
			quarter	quarter	quarter	quarter	average	max	
AT	177	28	< RL	< RL	< RL	< RL	< RL	< RL	8
BE	156	3	< RL	< RL	< RL	< RL	< RL	< RL	11
BG									
СҮ	6	1		< RL		< RL	< RL	< RL	6
CZ	139	64	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-N	362	49	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-C	237	45	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-S	334	65	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-E	282	44	< RL	< RL	< RL	< RL	< RL	< RL	2
DE	1215	203	< RL	< RL	< RL	< RL	< RL	< RL	12
DK	42	7	< RL	< RL	< RL	< RL	< RL	< RL	9
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-C	12	3	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	6
ES	72	8	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	1
FI-N	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
FI-S	48	4	5.4E-01	< RL	< RL	< RL	< RL	6.4E-01	3
FI	60	5	< RL	< RL	< RL	< RL	< RL	5.6E-01	3
FR-NW	35	25	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	11
FR-NE	8	8		< RL	7				
FR-SW	10	5		< RL	< <i>RL</i>	< RL	< RL	< RL	11
FR-SE	4	4		< RL		< RL	< RL	< RL	10
FR	57	42	< RL	< RL	< RL	< RL	< RL	< RL	11
GB-EN									
GB-WL									
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-NI	20	Ũ	.,					.,	,
GB	28	5	< RL	< RL	< RL	< RL	< RL	< RL	4
GR	5	1	< <i>RL</i>	< RL			< RL	< RL	1
HR-A	13	1	< RL	< RL	< RL	< RL	< RL	< RL	7
HR-C	51	3	< RL	< RL	< RL	< RL	< RL	< RL	7
HR	64	4	< RL	< RL	< RL	< RL	< RL	< RL	7
HU	288	26	< RL	< RL	< RL	< RL	< RL	< RL	11
IE	28	4	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-N	427	108	< RL	< RL	< RL	< RL	< RL	6.4E-01	8
IT-C	100	24	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-S	166	32	< RL	< RL	< RL	< RL	< RL	< RL	7
IT	693	164	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	8
LT	43	10	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	7
LU	36	3	< RL	< RL	< RL	< RL	< RL	< RL	12
LV	8	1	< RL	< RL	< RL	< RL	< RL	< RL	4
MT	4	2	< RL	< RL	< RL	< RL	< RL	< RL	3
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N	9	9	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	1	1	5.7E-01	5.7E-01	5.7E-01	5.7E-01	5.7E-01	5.7E-01	1
PL	10	10	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	36	6	< RL	< RL	< RL	< RL	< RL	< RL	6
RO-N	2	2		< RL	4				
RO-S	11	5	< RL	< RL	< RL	< RL	< RL	< RL	1
RO	13	7	< RL	< RL	< RL	< RL	< RL	< RL	12
SE-N	8	2	< RL	< RL	< RL < RL	< RL	< RL < RL	< RL	11
SE-N	12	3	< RL	< RL	< RL	< RL	< RL	< RL	1
SE-S	20	5	< RL < RL	< RL < RL	< RL	< RL < RL	< RL	< RL < RL	11
SI	34	4	< RL	< RL	< RL < RL	< RL	< RL < RL	< RL < RL	10
SK	34	4	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	3
JN	32	0	< KL						3

RL: reporting level for ¹³⁷Cs In milk, i.e. 5.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

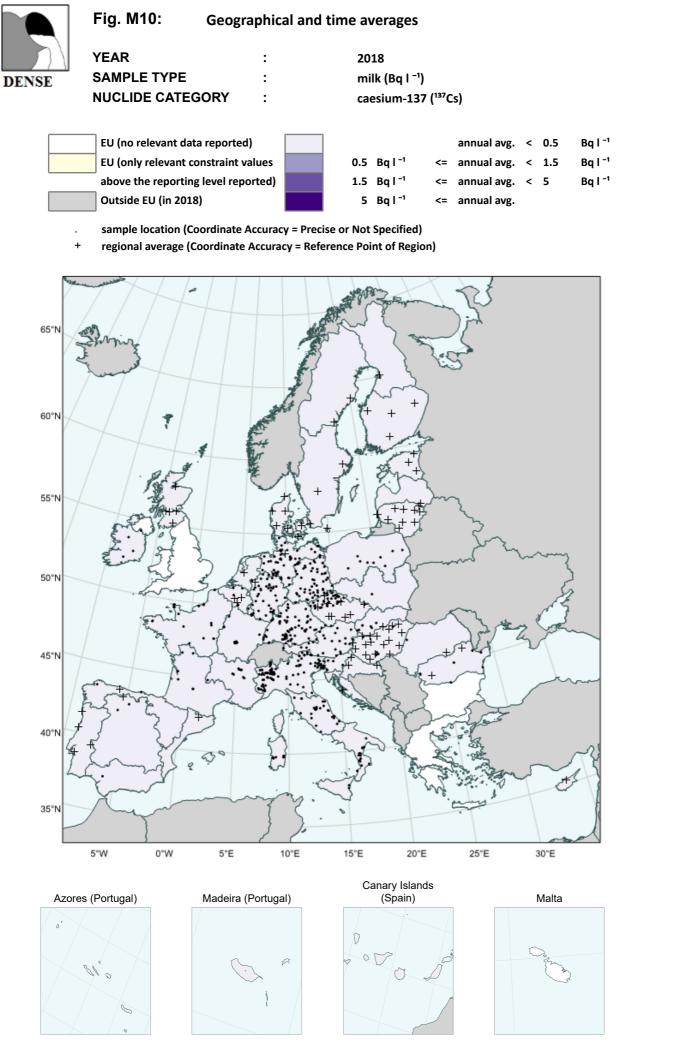
Table M9: Geographical and time averages

:

:

:

YEAR
SAMPLE TYPE
NUCLIDE CATEGORY


milk (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

2017

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
		Í	quarter	quarter	quarter	quarter	average	max	
AT	175	28	< RL	< RL	< RL	< RL	< RL	< RL	7
BE	159	3	< RL	< RL	< RL	< RL	< RL	< RL	10
BG	1	1				6.2E-01	6.2E-01	6.2E-01	10
СҮ	6	1	< RL	< RL			< RL	< RL	5
CZ	129	57	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-N	358	44	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-C	226	47	< RL	< RL	< RL	< RL	< RL	< RL	8
DE-S	325	68	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-E	296	49	< RL	< RL	< RL	< RL	< RL	< RL	4
DE	1205	208	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	2
DK	41	7	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	5
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-C	12	3	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-E	12	1	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	7
ES-E	72	8	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	7 10
ES FI-N			< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	
FI-N FI-S	12	1	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	11 12
FI-S FI	48 60	4 5	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	12 12
FI FR-NW				< RL < RL			< RL < RL	1	
	33	16	< RL		< RL	< RL		< RL	3
FR-NE	9	5	< RL	< RL	< RL	< RL	< <i>RL</i>	< RL	6
FR-SW	9	5		< RL	10				
FR-SE	5	4		< RL	9				
FR	56	30	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-EN									
GB-WL									
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	12
GB-NI									
GB	28	5	< RL	< RL	< RL	< RL	< RL	< RL	12
GR									
HR-A	8	1	< RL	< RL	< RL	< RL	< RL	< RL	9
HR-C	30	3	< RL	< RL	< RL	< RL	< RL	< RL	3
HR	38	4	< RL	< RL	< RL	< RL	< RL	< RL	3
HU	305	27	< RL	< RL	< RL	< RL	< RL	< RL	6
IE	29	4	< RL	< RL	< RL	< RL	< RL	< RL	11
IT-N	362	126	< RL	< RL	< RL	< RL	< RL	< RL	7
IT-C	146	58	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-S	163	66	< RL	< RL	< RL	< RL	< RL	7.2E-01	7
п	671	250	< RL	< RL	< RL	< RL	< RL	< RL	7
LT	44	12	< RL	< RL	< RL	< RL	< RL	< RL	5
LU	35	3	< RL	< RL	< RL	< RL	< RL	< RL	5
LV	8	1	< RL	< RL	< RL	< RL	< RL	< RL	11
МТ	3	1	< RL	İ	< RL	< RL	< RL	< RL	3
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N	9	9		1	İ	< RL	< RL	< RL	12
PL-S	1	1				< RL	< RL	< RL	12
PL	10	10				< RL	< RL	< RL	12
PT	35	6	< RL	< RL	< RL	< RL	< RL	< RL	11
RO-N	1	1	< RL	< RL	< RL	< RL	< RL	< RL	3
RO-S	9	4	< <i>RL</i>	< RL	< RL		< RL	< RL	3
RO	10	5	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	1
SE-N	7	2	< RL	< RL	< RL	< RL	< RL	< RL	8
SE-N	12	3	< RL	< RL	< RL	< RL	< RL	< RL	8
SE-S	19	5	< RL	< RL	< RL	< RL	< RL	< RL	6
SI	33	4	< RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	4
SK	29				< RL < RL		< RL < RL		
SN	29	6	< RL	< RL	< <i>KL</i>	< RL		< RL	3

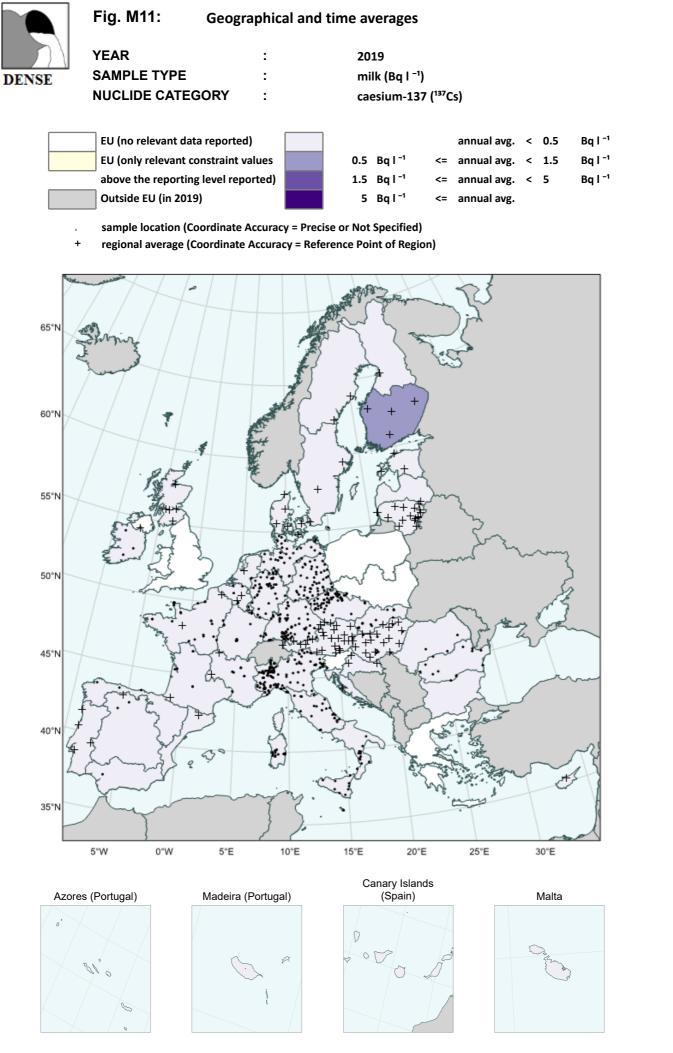
RL: reporting level for ^{137}Cs In milk, i.e. 5.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table M10: Geographical and time averages

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY


: : milk (Bq l⁻¹) caesium-137 (¹³⁷Cs)

2018

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	175	28	< RL	< RL	< RL	< RL	< RL	< RL	7
BE	161	6	< RL	< RL	< RL	< RL	< RL	< RL	6
BG									
СҮ	3	1			< RL	< RL	< RL	< RL	7
CZ	75	46	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-N	338	45	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-C	238	47	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-S	322	65	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-E	292	49	< RL	< RL	< RL	< RL	< RL	< RL	11
DE	1190	206	< RL	< RL	< RL	< RL	< RL	< RL	4
DK	42	8	< RL	< RL	< RL	< RL	< RL	< RL	11
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-C	12	3	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
ES	72	8	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	10
FI-N	11	1	< RL	< RL	< RL	< RL	< RL	< RL	9
FI-S	48	4	< <i>RL</i>	< RL	5.1E-01	5.3E-01	< RL	6.2E-01	9
FI	59	5	< <i>RL</i>	< RL	< RL	< RL	< RL	5.6E-01	9
FR-NW	26	22	< RL	< RL	< RL	< RL	< RL	< RL	4
FR-NE	16	15	< RL	< RL	< RL	< RL	< RL	< RL	5
FR-SW	7	6		< RL	< RL	< RL	< RL	< RL	7
FR-SE	9	9		< RL	< RL		< RL	< RL	9
FR	58	52	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-EN									
GB-WL									
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	10
GB-NI									
GB	28	5	< RL	< RL	< RL	< RL	< RL	< RL	10
GR									
HR-A	10	1	< RL	< RL	< RL	< RL	< RL	< RL	1
HR-C	48	3	< RL	< RL	< RL	< RL	< RL	< RL	8
HR	58	4	< RL	< RL	< RL	< RL	< RL	< RL	8
HU	300	24	< RL	< RL	< RL	< RL	< RL	< RL	6
IE	26	4	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-N	371	102	< RL	< RL	< RL	< RL	< RL	< RL	8
IT-C	88	24	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-S	146	23	< RL	< RL	< RL	< RL	< RL	< RL	5
IT	605	149	< RL	< RL	< <i>RL</i>	< RL	< <i>RL</i>	< RL	8
LT	45	12	< RL	< RL	< RL	< RL	< RL	< RL	7
LU	36	3	< RL	< RL	< RL	< RL	< RL	< RL	4
LV	5	1	< <i>RL</i>	< RL	< RL		< <i>RL</i>	< RL	3
MT									
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N	9	9	< <i>RL</i>	< RL	< RL	< RL	< <i>RL</i>	< RL	1
PL-S	1	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL	10	10	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	36	6	< <i>RL</i>	< RL	< RL	< RL	< <i>RL</i>	< RL	6
RO-N	5	2	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-S	22	8	< RL	< RL	< RL	< RL	< RL	< RL	3
RO	27	10	< RL	< RL	< RL	< RL	< RL	< RL	2
SE-N		2	< RL	< RL	< RL	< RL	< RL	< RL	6
SE-S	12	3	< RL	< RL	< RL	< RL	< RL	< RL	11
SE	20	5	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	6
SI	30	4	< RL	< RL	< RL	< RL	< RL	< RL	2
SK	31	7	< RL	< RL	< RL	< RL	< RL	< RL	9
UN		,	- 116	-776			- 112	- 116	3

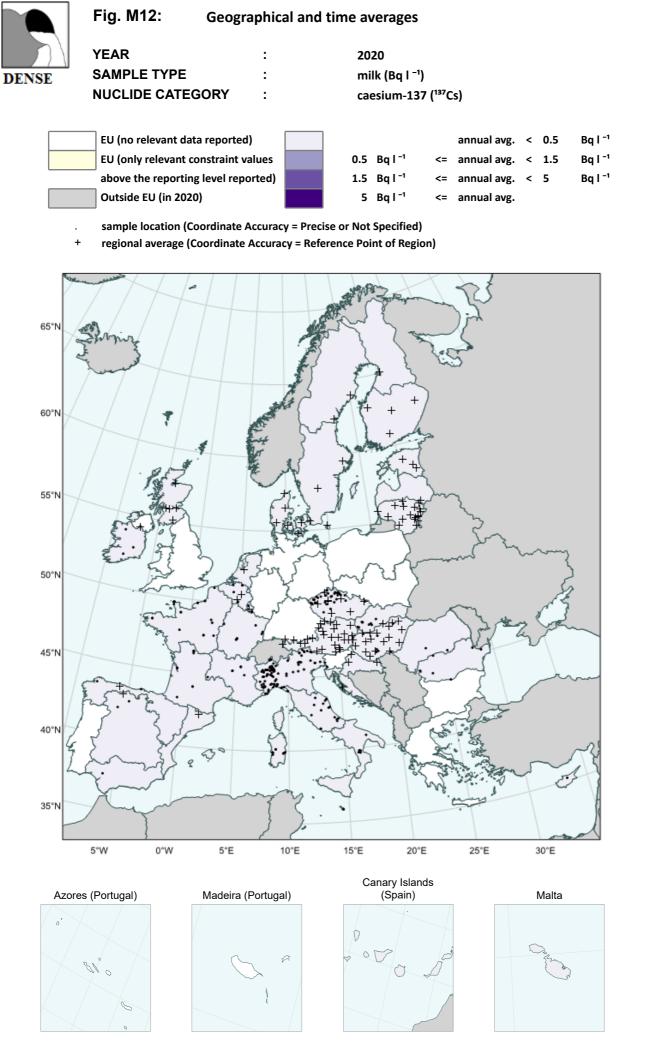
RL: reporting level for ¹³⁷Cs In milk, i.e. 5.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table M11: Geographical and time averages

YEAR SAMPLE TYPE NUCLIDE CATEGORY

: : :


milk (Bq l⁻¹) caesium-137 (¹³⁷Cs)

2019

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	177	28	< RL	< RL	< RL	< RL	< RL	< RL	7
BE	164	5	< RL	< RL	< RL	< RL	< RL	< RL	8
BG	3	1	< RL	< RL	< RL		< RL	< RL	3
CY	3	1	< RL	< RL			< RL	< RL	3
CZ	76	56	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-N	307	33	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-C	204	42	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-S	328	63	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-E	282	49	< RL	< RL	< RL	< RL	< RL	< RL	5
DE	1121	187	< RL	< RL	< RL	< RL	< RL	< RL	5
DK	38	7	< RL	< RL	< RL	< RL	< RL	< RL	4
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-C	12	3	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	10
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-N	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-S	48	4	6.5E-01	< RL	< RL	< RL	5.1E-01	7.0E-01	3
FI	60	5	5.9E-01	< RL	< RL	< RL	< RL	6.2E-01	3
FR-NW	35	32	< RL	< RL	< RL	< RL	< RL	< RL	6
FR-NE	16	15	< RL	< RL	< RL	< RL	< RL	< RL	6
FR-SW	8	8		< RL	< RL	< RL	< RL	< RL	4
FR-SE	8	8		< RL	< RL	< RL	< RL	< RL	11
FR	67	63	< RL	< RL	< RL	< RL	< RL	< RL	6
GB-EN									
GB-WL									
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	6
GB-NI									
GB	28	5	< RL	< RL	< RL	< RL	< RL	< RL	6
GR									
HR-A	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
HR-C	48	3	< RL	< RL	< RL	< RL	< RL	< RL	2
HR	60	4	< RL	< RL	< RL	< RL	< RL	< RL	2
HU	229	27	< RL	< RL	< RL	< RL	< RL	< RL	12
IE	20	4	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-N	428	114	< RL	< RL	< RL	< RL	< RL	< RL	7
IT-C	80	23	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-S	110	36	< RL	< RL	< RL	< RL	< RL	< RL	12
IT	618	173	< RL	< RL	< RL	< RL	< RL	< RL	7
LT	71	20	< RL	< RL	< RL	< RL	< RL	< RL	6
LU	48	4	< RL	< RL	< RL	< RL	< RL	< RL	12
LV	8	1	< RL	< RL	< RL	< RL	< RL	< RL	11
MT	8	1	< RL	< RL	< RL	< RL	< RL	< RL	3
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N									
PL-S									
PL				1.51					^
PT	33	6	< RL	< RL	< RL	< RL	< RL	< RL	6
RO-N	6	3	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-S	18	13	< RL	< RL	< RL	< RL	< RL	< RL	10
RO	24	16	< RL	< RL	< RL	< RL	< RL	< RL	10
SE-N	8	2	< RL	< RL	< RL	< RL	< RL	< RL	4
SE-S	12	3	< RL	< RL	< RL	< RL	< RL	< RL	1
SE	20	5	< RL	< RL	< RL	< RL	< RL	< RL	4
SI									
SK	48	13	< RL	< RL	< RL	< RL	< RL	< RL	12

RL: reporting level for ¹³⁷Cs In milk, i.e. 5.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

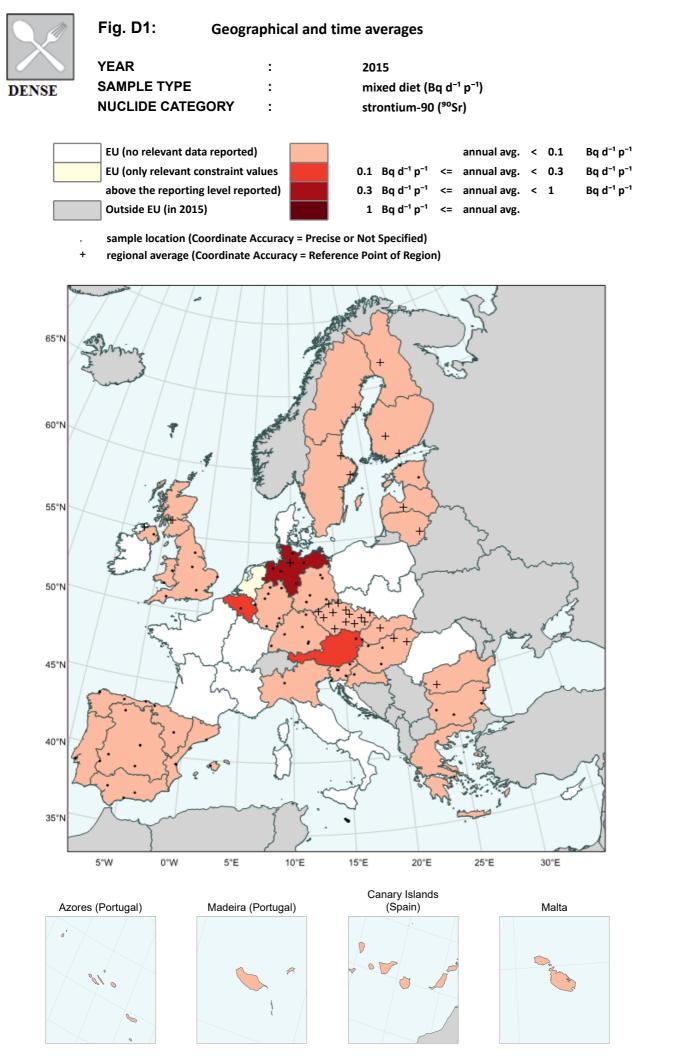
Table M12: Geographical and time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY


milk (Bq l⁻¹) caesium-137 (¹³⁷Cs)

2020

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
-		ĺ	quarter	quarter	quarter	quarter	average	max	
AT	145	28	< RL	< RL	< RL	< RL	< RL	< RL	10
BE	322	5	< RL	< RL	< RL	< RL	< RL	< RL	8
BG									
CY	3	1	< RL	< RL	< RL		< RL	< RL	8
CZ	58	44	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-N									
DE-C									
DE-S									
DE-E									
DE									
DK	34	7	< RL	< RL	< RL	< RL	< RL	< RL	10
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-N	36	3	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-C	10	3	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-S	11	1	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	5
ES	69	8	< RL	< RL	< RL	< RL	< RL	< RL	5
FI-N	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-S	48	4	< RL	< RL	< RL	< RL	< RL	5.4E-01	3
FI	60	5	< RL	< RL	< RL	< RL	< RL	< RL	3
FR-NW	20	19		< RL	11				
FR-NE	10	10		< RL	11				
FR-SW	11	9		< RL	9				
FR-SE	6	6		< RL	11				
FR	47	44		< RL	9				
GB-EN									
GB-WL									
GB-SC	26	5	< RL	< RL	< RL	< RL	< RL	< RL	10
GB-NI									
GB	26	5	< RL	< RL	< RL	< RL	< RL	< RL	10
GR									
HR-A	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
HR-C	48	3	< RL	< RL	< RL	< RL	< RL	< RL	2
HR	60	4	< RL	< RL	< RL	< RL	< RL	< RL	2
HU	144	26	< RL	< RL	< RL	< RL	< RL	< RL	9
IE	24	4	< RL	< RL	< RL	< RL	< RL	< RL	6
IT-N	292	94	< RL	< RL	< RL	< RL	< RL	< RL	9
IT-C	41	16	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	2
IT-S	27	13	< RL	< RL	< RL	< RL	< RL	< RL	- 11
п	360	123	< RL	< RL	< RL	< RL	< RL	< RL	8
LT	67	19	< RL	< RL	< RL	< RL	< RL	< RL	7
LU	40	4	< RL	< RL	< RL	< RL	< RL	< RL	2
LV	16	1	< RL	< RL	< RL	< RL	< RL	< RL	12
MT	2	1		< RL		< RL	< RL	< RL	6
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N	12	,	- , \L	- 116		- /	- 112	- 112	,
PL-S									
PL									
PT									
RO-N	3	2	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-N RO-S	7	6	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	12
		I		1		1			
RO	10	8	< RL	< RL	< RL	< RL	< RL	< RL	12
SE-N	8	2	< RL	< RL	< RL	< RL	< RL	< RL	9
SE-S	12	3	< RL	< RL	< RL	< RL	< RL	< RL	8
SE	20	5	< RL	< RL	< RL	< RL	< RL	< RL	9
SI									
SK	41	9	< RL	< RL	< RL	< RL	< RL	< RL	1

RL: reporting level for ¹³⁷Cs In milk, i.e. 5.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table D1: Geographical and time averages

2nd

quarter

Monthly

max

Annual

average

М

YEAR	:	2015
SAMPLE TYPE	:	mixed diet (Bq d ⁻¹ p ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

1st

quarter

Country

Ν

L

			quarter	quarter	quarter	quarter	average	max	
AT	5	1	1.4E-01	1.2E-01	< RL	< RL	1.1E-01	1.4E-01	1
BE	3	1	1.4E-01		1.5E-01	1.5E-01	1.5E-01	1.5E-01	12
BG	14	4	< RL	< RL	< RL	< RL	< RL	< RL	4
СҮ									
CZ	19	14	< RL	< RL	< RL	< RL	< RL	< RL	5
DE-N	31	6	< RL	1.1E+00	< RL	< RL	3.3E-01	1.2E+00	5
DE-C	32	8	< RL	< RL	< RL	< RL	< RL	1.1E-01	1
DE-S	21	6	1.2E-01	< RL	< RL	< RL	< RL	1.3E-01	2
DE-E	31	5	< RL	< RL	< RL	< RL	< RL	< RL	2
DE	115	25	< <i>RL</i>	3.2E-01	< RL	< RL	1.3E-01	3.4E-01	5
DK	110	20	-112	0.22 07	- TIL	-112	1.52 01	0.42 07	0
EE	4	2	< RL			< RL	< RL	< RL	3
ES-N	18	6	< RL	< RL	< RL	< RL	< RL	< RL	4
ES-C	24	6	< RL	< RL	< RL	< RL	< RL	< RL	- 12
ES-S	14		< RL < RL	< RL < RL	< RL	< RL < RL	< RL < RL	< RL < RL	
ES-S		4					1		11
	16	4	< RL	< RL	< RL	< RL	< RL	< RL	11
ES	72	20	< RL	< RL	< RL	< RL	< RL	< RL	8
FI-N	1	1				< RL	< RL	< RL	10
FI-S	2	2				< RL	< RL	< RL	10
FI	3	3				< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL		< RL	< RL	1
GB-WL	5	2	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-SC	14	2	< RL	< RL	< RL	< RL	< RL	1.2E-01	3
GB-NI	5	2	< RL	< RL	< RL	< RL	< RL	< RL	3
GB	32	11	< RL	< RL	< RL	< RL	< RL	1.1E-01	6
GR	1	1		< RL			< RL	< RL	5
HR-A									
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
HU	12	5	< RL	< RL	< RL		< RL	1.0E-01	1
IE									
IT-N	5	1	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-C									
IT-S									
п	5	1	< RL	< RL	< RL	< RL	< RL	< RL	1
LT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	4
LU									
LV	2	1	< RL	< RL			< RL	< RL	3
МТ	12	10	< RL	< RL	< RL	< RL	< RL	< RL	2
NL		-					Δ		
PL-N									
PL-S									
PL									
PT	9	1	< RL	1.1E-01	< RL	< RL	< RL	1.8E-01	5
RO-N	-	- '	- 7 12	1.12 01		.,		1.02.01	
RO-S	2	1	< RL				< RL	< RL	1
RO	2	1	< RL				< RL	< RL	1
SE-N	2	1	> NL		< RL	1.2E-01	< RL < RL	1.2E-01	10
				< RL					
SE-S	4	2			< RL	1.3E-01	< RL	1.3E-01	10 10
				S RL	S RL	1.3E-01			10
						- 01			3
SK	8	2	<	< <i>RL</i>	< RL	< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	4
SE SI SK	6 5 8	3 5 2	< <i>RL</i> < <i>RL</i>	< RL < RL	< RL < RL	1.3E-01 1.3E-01 < RL	< RL < RL < RL < RL	1.3E-01 1.3E-01 < RL < RL	_

4th

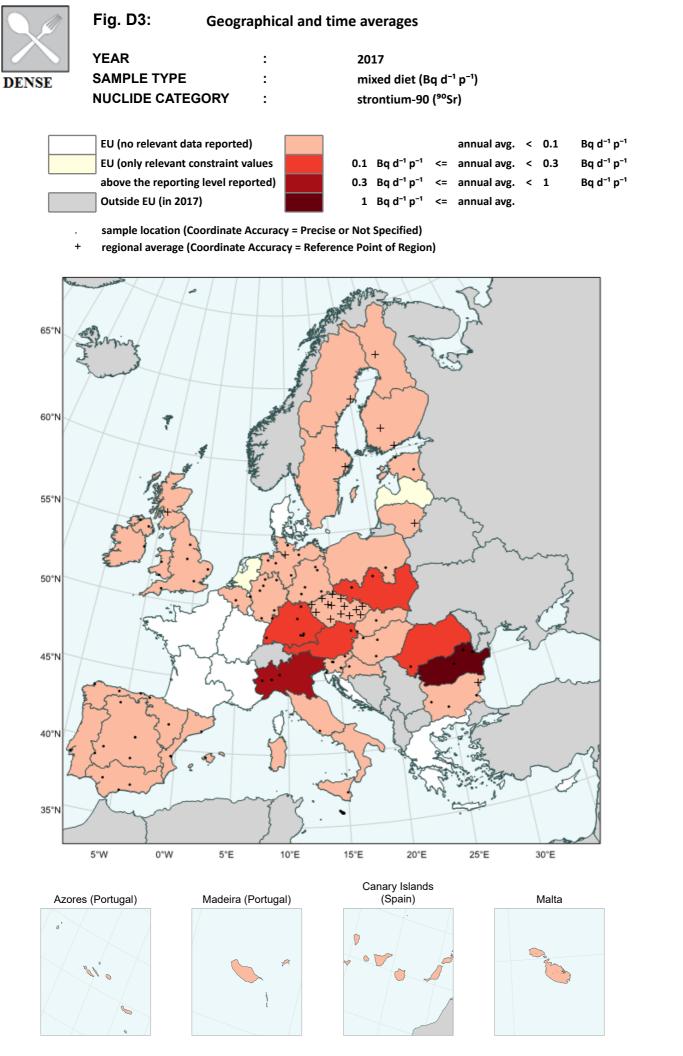
quarter

3rd

quarter

RL: reporting level for ⁹⁰Sr In mixed diet, i.e. 1.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table D2: Geographical and time averages



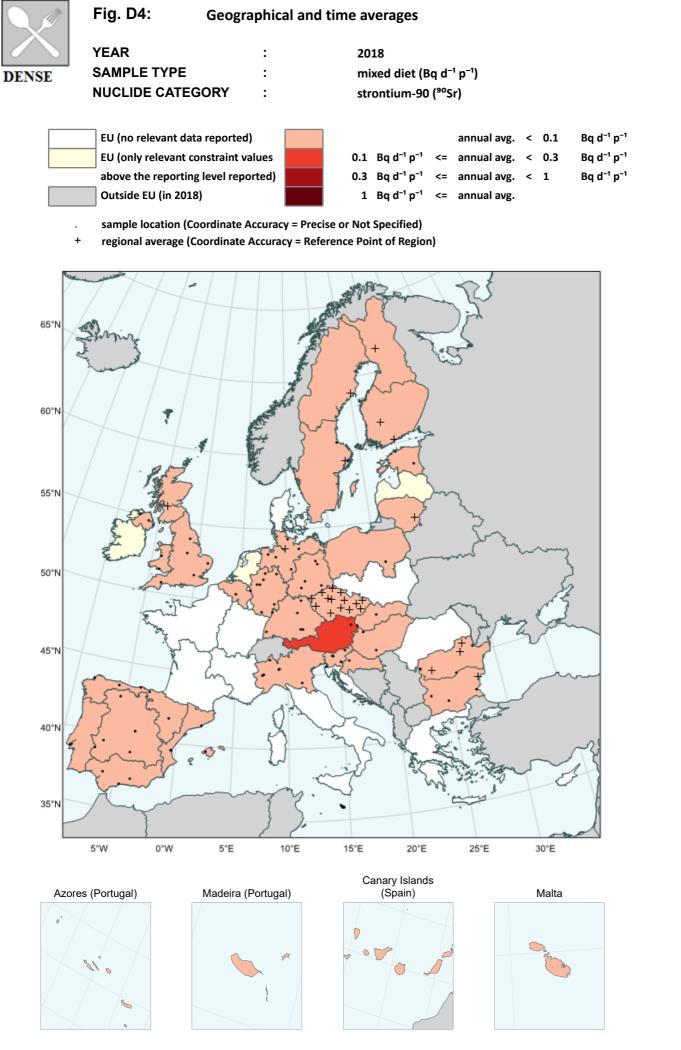
YEAR : SAMPLE TYPE : NUCLIDE CATEGORY :

2016 mixed diet (Bq d⁻¹ p⁻¹) strontium-90 (⁹⁰Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	5	1	< RL	< RL	< RL	< RL	< RL	< RL	7
BE	3	1	< RL		< RL		< RL	1.0E-01	7
BG	14	4	< RL	< RL	< RL	< RL	< RL	< RL	6
CY									
CZ	20	14	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-N	31	6	< RL	< RL	< RL	< RL	< RL	1.0E-01	6
DE-C	31	8	< RL	< RL	< RL	< RL	< RL	< RL	5
DE-S	18	6	< RL	< RL	< RL	< RL	< RL	1.7E-01	3
DE-E	32	5	< RL	< RL	< RL	< RL	< RL	1.3E-01	8
DE	112	25	< RL	< RL	< RL	< RL	< RL	< RL	3
DK									
EE	4	2	< RL			< RL	< RL	< RL	2
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	4
ES-C	25	7	< RL	< RL	< RL	< RL	< RL	1.2E-01	4
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	1
ES	77	20	< RL	< RL	< RL	< RL	< RL	< RL	4
FI-N	1	1				< RL	< RL	< RL	10
FI-S	2	2				< RL	< RL	< RL	10
FI	3	3				< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL		< RL	< RL	< RL	< RL	9
GB-WL	5	2	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	4
GB-SC	28	5	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	6
GB-NI	5	2	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	3
GB	46	14	< RL	< RL	< RL	< RL	< RL	< RL	6
GR	1	1		< RL			< RL	< RL	5
HR-A	_								
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
HU	8	3	< RL		< RL		< RL	< RL	3
IE	7			1 D/	- 0/	- DI	Δ	1.01	
IT-N IT-C	7	3	< RL	< RL	< RL	< RL	< RL	< RL	7
IT-C									
IT	7	3	< RL	< RL	< RL	< RL	< RL	< RL	7
LT	12	1	< RL	< RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	1
LU	12		< RL	< RL	< RL	< RL	< RL	< RL	
LV	1	1	< RL				< <i>RL</i>	< RL	3
MT	13	12	1.1E-01	< <i>RL</i>	< <i>RL</i>	< RL	< RL	1.2E-01	2
NL	10	12		- NE	- NE	- 116	Δ		-
PL-N									
PL-S	2	2				2.4E-01	2.4E-01	2.4E-01	12
PL	2	2				2.4E-01	2.4E-01	2.4E-01	12
PT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-N		·							-
RO-S									
RO									
SE-N	2	1		< RL		< RL	< RL	< RL	5
SE-S	4	2		< RL		< RL	< RL	< RL	5
SE	6	3		< RL		< RL	< RL	< RL	5
SI	5	5	< RL	< RL			< RL	< RL	4
SK	7	2	< RL	3.6E-01	< RL		1.6E-01	6.8E-01	5
	, <u> </u>	-	- /	0.02 07				5.02 07	~

RL: reporting level for ^{90}Sr In mixed diet, i.e. 1.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table D3: Geographical and time averages



YEAR	:	
SAMPLE TYPE	:	
NUCLIDE CATEGORY	:	

2017 mixed diet (Bq d⁻¹ p⁻¹) strontium-90 (⁹⁰Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	5	1	1.3E-01	< RL	< RL	< RL	1.0E-01	1.4E-01	1
BE	1	1	< RL				< RL	< RL	1
BG	16	4	< RL	< RL	< RL	< RL	< RL	< RL	1
CY									
CZ	20	14	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-N	29	6	< RL	< RL	< RL	< RL	< RL	1.3E-01	4
DE-C	30	8	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-S	19	6	2.7E-01	< RL	< RL	< RL	1.1E-01	6.5E-01	3
DE-E	32	5	< RL	< RL	< RL	< RL	< RL	< RL	8
DE	110	25	1.0E-01	< RL	< RL	< RL	< RL	1.9E-01	3
DK									
EE	4	2	< RL			< RL	< RL	< RL	2
ES-N	19	5	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-C	24	6	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	1.3E-01	10
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	1.6E-01	4
ES	75	19	< RL	< RL	< RL	< RL	< RL	< RL	10
FI-N	1	1				< RL	< RL	< RL	10
FI-S	2	2				< RL	< RL	1.0E-01	11
FI	3	3				< RL	< RL	1.0E-01	11
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL		< RL	< RL	4
GB-WL	5	2	< RL	< RL	< RL	< RL	< RL	< RL	2
GB-SC	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI	5	2	< RL	< RL		< RL	< RL	< RL	12
GB	30	10	< RL	< RL	< RL	< RL	< RL	< RL	1
GR									
HR-A									
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
HU	8	3	< RL		< RL		< RL	< RL	3
IE	1	1				< RL	< RL	< RL	11
IT-N	4	3	< RL	1.3E+00	< RL	< RL	3.6E-01	1.3E+00	5
IT-C	1	1		< RL	< RL		< RL	< RL	6
IT-S	1	1	< RL	< RL			< <i>RL</i>	< RL	3
IT	6	5	< RL	2.6E-01	< RL	< RL	1.1E-01	6.7E-01	5
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	9
LU									
LV	10	10		. 5/	. 5/	. 5/	Δ	1.05.01	
MT	13	10	< RL	< RL	< RL	< RL	< RL	1.0E-01	3
NL							Δ		
PL-N	1	1				< <i>RL</i>	< <i>RL</i>	< <i>RL</i>	12
PL-S	2	2	2.4E-01	2.4E-01	2.4E-01	2.4E-01	2.4E-01	2.4E-01	12
PL	3	3	2.4E-01	2.4E-01	2.4E-01	2.1E-01	2.3E-01	2.4E-01	1
PT	6	1	< RL	< RL	0.05.01	< RL	< RL	1.0E-01	11
RO-N	1	1	2.9E-01	2.9E-01	2.9E-01	2.9E-01	2.9E-01	2.9E-01	3
RO-S	7	3	< RL	1.3E-01	< RL	3.9E+00	1.0E+00	3.9E+00	10
RO	8	4	1.0E-01	2.6E-01	2.1E-01	8.8E-01	3.6E-01	2.1E+00	10
SE-N	2	1		< RL		< RL	< RL	< RL	5
SE-S	4	2		< RL		< RL	< RL	< RL	10
SE	6	3		< RL	L	< RL	< RL	< RL	5
SI	5	5	< RL	< RL	L		< RL	< RL	4
SK	8	2	< RL	< RL	< RL	< RL	< RL	< RL	4

RL: reporting level for ^{90}Sr In mixed diet, i.e. 1.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table D4: Geographical and time averages

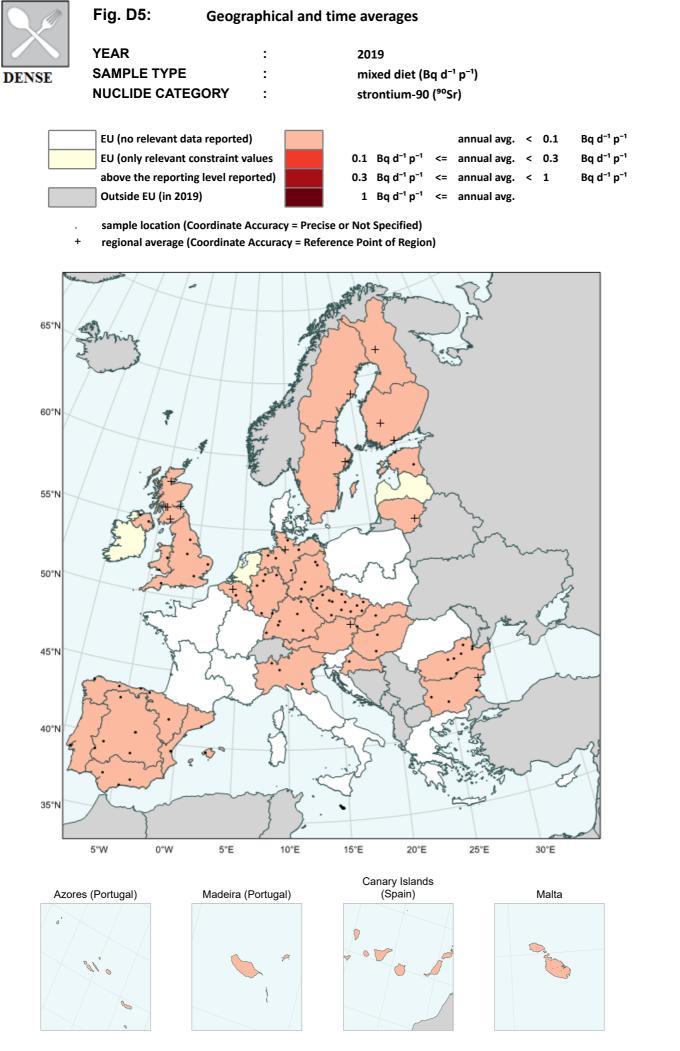
YEAR	:	2018
SAMPLE TYPE	:	mixed diet (Bq d ⁻¹ p ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

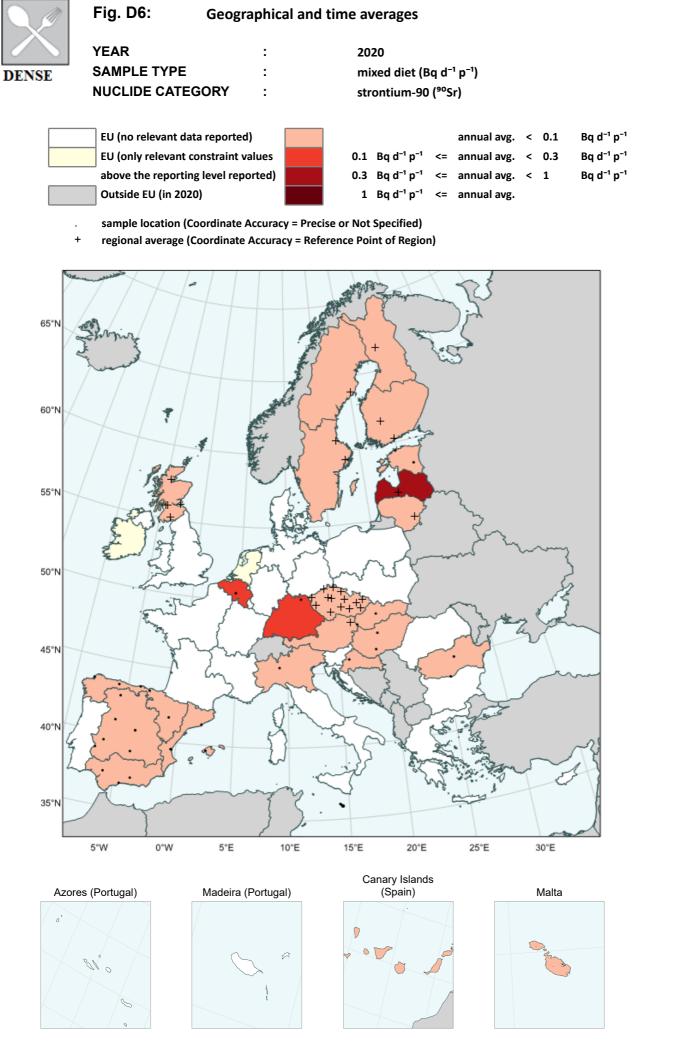
Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	4	1	< RL	1.0E-01	1.2E-01	< RL	1.1E-01	1.2E-01	7
BE	3	1		< RL					
BG	14	4	< RL	< RL	< RL	< RL	< RL	< RL	6
СҮ									
CZ	20	14	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-N	31	6	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-C	30	9	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-S	17	5	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-E	31	5	< RL	< RL	< RL	< RL	< RL	< RL	2
DE	109	25	< RL	< RL	< RL	< RL	< RL	< RL	4
DK									
EE	4	2	< RL			< RL	< RL	< RL	2
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	4
ES-C	24	6	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	5
ES	76	19	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-N	1	1				< RL	< RL	< RL	10
FI-S	2	2				< RL	< RL	< RL	10
FI	3	3				< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-WL	5	2	< RL	< RL		< RL	< RL	< RL	1
GB-SC	12	1	< RL	< RL	< RL	< RL	< RL	< RL	8
GB-NI	5	2		< RL		< RL	< RL	< RL	11
GB	30	10	< RL	< RL	< RL	< RL	< RL	< RL	8
GR									
HR-A									
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
HU	6	2	< RL		< RL		< RL	< RL	9
IE							Δ		
IT-N	8	6	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-C		-							
IT-S									
IT	8	6	< RL	< RL	< RL	< RL	< RL	< RL	10
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
LU		· ·						,	
LV							Δ		
MT	11	10	< RL	< RL	< RL	< RL	< <i>RL</i>	1.1E-01	9
NL					,		Δ		5
PL-N	1	1	< RL	< RL	< RL	< RL	< <i>RL</i>	< RL	1
PL-S	'	'	- , \L			- //			'
PL-S	1	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL	11	1	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	1.3E-01	5
RO-N	11	'	> NL	> NL		S NL		1.32-01	5
RO-N RO-S	11	6	< RL	< RL	< RL		< RL	< RL	9
	14								
RO	14	6	< RL	< RL	< RL	1.51	< RL	< RL	9
SE-N	2	1		< RL		< RL	< RL	< RL	5
SE-S	4	2		< RL		< RL	< RL	< RL	10
SE	6	3		< RL	ļ	< RL	< RL	< RL	10
SI	5	5	< RL	< RL			< RL	< RL	4
SK	8	2	< RL	< RL	< RL	< RL	< RL	1.1E-01	2

RL: reporting level for ^{90}Sr In mixed diet, i.e. 1.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

201

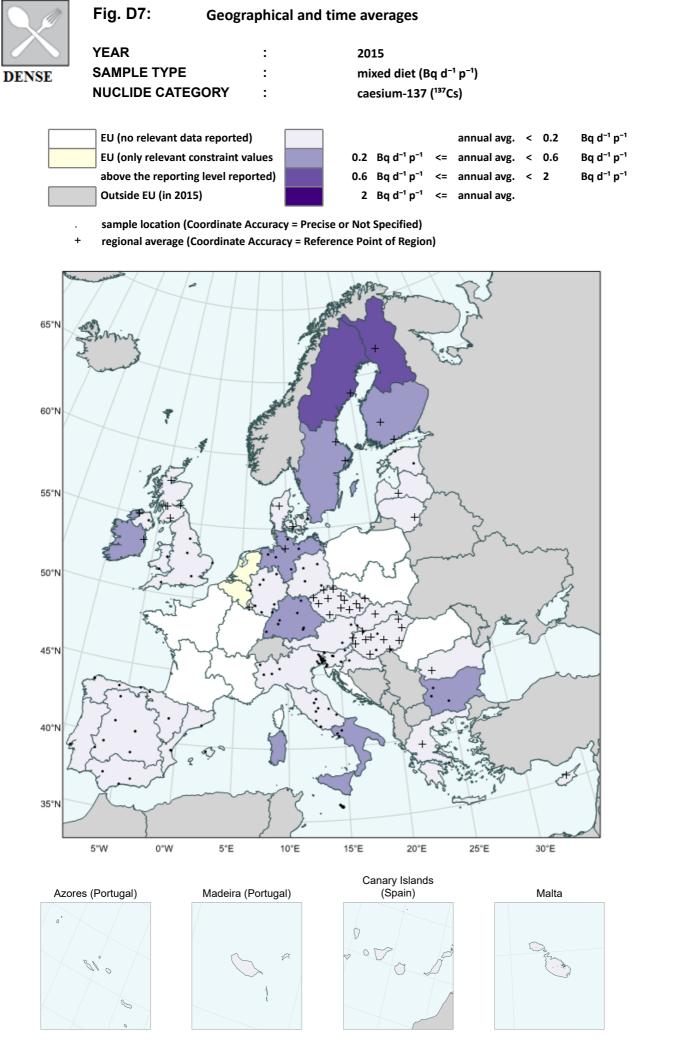



Table D5: Geographical and time averages

YEAR	:	2019
SAMPLE TYPE	:	mixed diet (Bq d ⁻¹ p ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	4	1	< RL	1.2E-01	< RL	< RL	< RL	1.2E-01	4
BE	2	2	< RL	< RL			< RL	< RL	1
BG	14	4	< RL	< RL	< RL	< RL	< RL	< RL	12
CY						1			
CZ	21	14	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	29	6	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-C	29	7	< RL	< RL	< RL	< RL	< RL	< RL	8
DE-S	21	6	< RL	< RL	< RL	< RL	< RL	< RL	3
DE-E	25	5	< RL	< RL	< RL	< RL	< RL	1.2E-01	4
DE	104	24	< RL	< RL	< RL	< RL	< RL	< RL	4
DK									
EE	4	2	< RL			< RL	< RL	< RL	2
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	11
ES-C	23	6	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	10
ES	75	19	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	1	1				< RL	< RL	< RL	10
FI-S	2	2				< RL	< RL	< RL	10
FI	3	3				< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-WL	5	2	< RL	< RL	< RL		< RL	< RL	5
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	1.3E-01	5
GB-NI	5	2	< <i>RL</i>	< RL	< RL		< RL	< RL	8
GB	46	14	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	5
GR									
HR-A									
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
HU	6	2	< RL	< RL	< RL	< RL	< RL	< RL	4
IE							Δ		
IT-N	5	3	< RL	< RL		< RL	< RL	< RL	5
IT-C									
IT-S									
п	5	3	< RL	< RL		< RL	< RL	< RL	5
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	12
LU									
LV							Δ		
МТ	12	11	< RL	< RL	< RL	< RL	< RL	1.0E-01	2
NL					i		Δ	i	
PL-N				İ	i	i		i	
PL-S									
PL									
PT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	10
RO-N				İ	i	i		i	
RO-S	13	8	< RL	< RL	< RL	< RL	< RL	< RL	3
RO	13	8	< RL	< RL	< RL	< RL	< RL	< RL	3
SE-N	2	1		< RL		< RL	< RL	< RL	10
SE-S	3	2		< RL		< RL	< RL	< RL	10
SE	5	3		< RL		< RL	< RL	< RL	10
SI		-							
SK	7	2	1.8E-01	< RL	1.0E-01	< RL	< RL	3.2E-01	3
		-							-

RL: reporting level for ^{90}Sr In mixed diet, i.e. 1.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported


Table D6: Geographical and time averages

YEAR	:	2020
SAMPLE TYPE	:	mixed diet (Bq d ⁻¹ p ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
BE	1	1	2.7E-01				2.7E-01	2.7E-01	1
BG									
CY									
CZ	20	14	< RL	< RL	< RL	< RL	< RL	1.0E-01	2
DE-N									
DE-C									
DE-S	1	1	1.4E-01				1.4E-01	1.4E-01	1
DE-E									
DE	1	1	1.4E-01				1.4E-01	1.4E-01	1
DK									
EE	4	2	< RL			< RL	< RL	< RL	3
ES-N	18	5	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-C	23	7	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES	73	20	< RL	< RL	< RL	< RL	< RL	< RL	5
FI-N	1	1				< RL	< RL	< RL	11
FI-S	2	2				< RL	< RL	< RL	10
FI	3	3				< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN									
GB-WL									
GB-SC	23	5	< RL	< RL	< RL	< RL	< RL	1.0E-01	6
GB-NI									
GB	23	5	< RL	< RL	< RL	< RL	< RL	1.0E-01	6
GR									
HR-A									
HR-C	5	1				< RL	< RL	< RL	12
HR	5	1				< RL	< RL	< RL	12
HU	6	2		< RL	< RL		< RL	< RL	4
IE							Δ		
IT-N	3	1	< RL		< RL	< RL	< RL	< RL	1
IT-C									
IT-S									
т	3	1	< RL		< RL	< RL	< RL	< RL	1
LT	8	1	< RL	< RL	< RL	< RL	< RL	< RL	1
LU						1			
LV	1	1	6.3E-01				6.3E-01	6.3E-01	3
МТ	7	7	< RL		< RL	< RL	< RL	< RL	1
NL				İ		1	Δ	İ	
PL-N						1			
PL-S									
PL									
PT				İ		i		i	
RO-N									
RO-S	2	2	< RL	< RL	< RL		< RL	< RL	5
RO	2	2	< <i>RL</i>	< RL	< RL		< <i>RL</i>	< RL	5
SE-N	2	-		< RL		< RL	< RL	< RL	11
SE-S	4	2		< RL		< RL	< RL	1.3E-01	5
SE	6	3		< RL		< RL	< RL	1.3E-01	5
SI	-	-							-
SK	6	2	< RL	< RL		< RL	< RL	< RL	10
JI	<u> </u>	-	- 116	- 112		- 112	- 112	- 112	,0

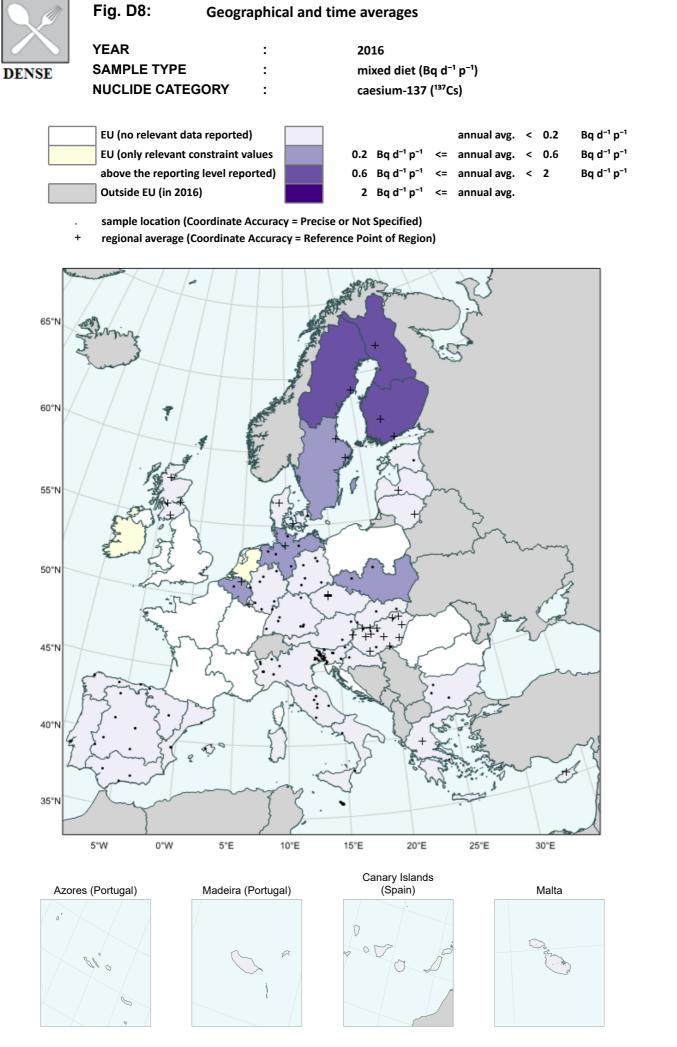
RL: reporting level for ^{90}Sr In mixed diet, i.e. 1.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table D7: Geographical and time averages

:

:

:



YEAR SAMPLE TYPE NUCLIDE CATEGORY

2015 mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	26	2	< RL	< RL	< RL	< RL	< RL	< RL	8
BE							Δ		
BG	11	3	6.3E-01	< RL	2.4E-01	7.7E-01	4.5E-01	7.7E-01	10
CY	6	1				< RL	< RL	< RL	12
CZ	21	14	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-N	119	6	< RL	2.4E-01	3.0E-01	2.1E-01	2.4E-01	5.0E-01	8
DE-C	125	8	< RL	< RL	< RL	< RL	< RL	< RL	6
DE-S	106	7	< RL	2.4E-01	2.8E-01	< RL	2.1E-01	3.9E-01	4
DE-E	84	4	< RL	< RL	< RL	< RL	< RL	2.3E-01	9
DE	434	25	< RL	2.0E-01	2.1E-01	< RL	< RL	2.5E-01	4
DK	3	3		< RL			< RL	< RL	4
EE	4	2	< RL			< RL	< RL	< RL	10
ES-N	21	6	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-C	26	7	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	4
ES	79	21	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	7	1				7.0E-01	7.0E-01	7.0E-01	10
FI-S	14	2				5.1E-01	5.1E-01	5.1E-01	10
FI	21	3				5.7E-01	5.7E-01	5.7E-01	10
FR-NW									
FR-NE	ĺ								
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL		< RL	< RL	4
GB-WL	5	2	< RL	< RL	< RL	< RL	< RL	< RL	2
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	2
GB-NI	5	2	< RL	< RL	< RL	< RL	< RL	< RL	11
GB	46	14	< RL	< RL	< RL	< RL	< RL	< RL	2
GR	18	2	< RL	< RL	< RL	< RL	< RL	< RL	7
HR-A									
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
ни	27	15	< RL	< RL	< RL	< RL	< RL	< RL	6
IE	3	1	2.7E-01			3.5E-01	3.1E-01	5.1E-01	12
IT-N	42	20	< RL	< RL	< RL	< RL	< RL	< RL	9
IT-C	11	9	< RL	< RL	< RL	< RL	< RL	< RL	8
IT-S	3	3			9.0E-01	2.7E-01	5.9E-01	9.0E-01	9
п	56	32	< RL	< RL	2.1E-01	< RL	< RL	3.6E-01	9
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	9
LU	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
LV	3	1	< RL	< RL		< RL	< RL	< RL	11
мт	12	10	< RL	< RL	< RL	< RL	< RL	2.8E-01	12
NL							Δ		
PL-N									
PL-S									
PL									
PT	10	1	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-N		· ·							
RO-S	2	1	< RL				< RL	< RL	1
RO	2	1	< RL				< RL	< RL	1
SE-N	3	1	- , \L		2.8E-01	2.1E+00	1.2E+00	2.7E+00	11
SE-N	4	2		< RL	< RL	4.5E-01	2.6E-01	4.5E-01	10
SE-S	7	2		< RL < RL	2.1E-01	2.0E+00	8.0E-01	2.7E+00	10
SI	5	5	< RL	- 116	2.12-01	2.02.00	< RL	< RL	3
SK	12	3	< RL < RL	< RL	3.7E-01	< RL	< RL < RL	< RL 7.2E-01	7
JA	12	3	< KL		3.1E-01			1.2E-01	/

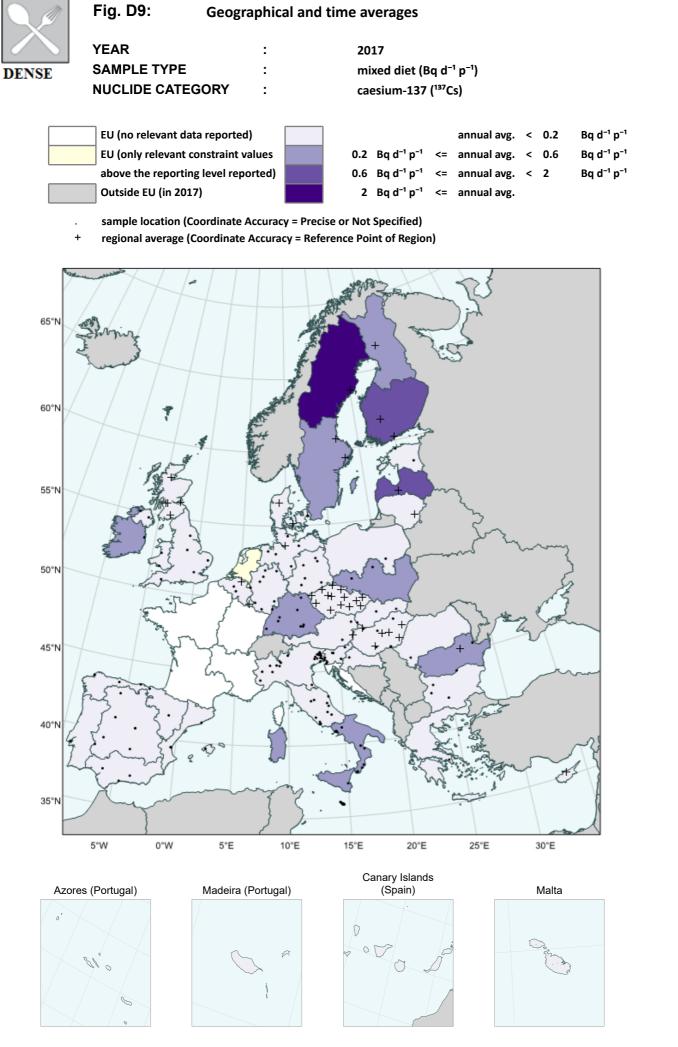
RL: reporting level for ^{137}Cs In mixed diet, i.e. 2.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

Table D8: Geographical and time averages

:

:

:



YEAR SAMPLE TYPE NUCLIDE CATEGORY

2016 mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	23	2	< RL	< RL	< RL	< RL	< RL	< RL	5
BE	7	2	< RL	< RL		3.1E-01	2.0E-01	4.6E-01	10
BG	10	3	< RL	2.0E-01	< RL	2.3E-01	< RL	4.1E-01	11
CY	22	1		< RL		< RL	< RL	< RL	11
CZ	3	3		2.3E-01		< RL	< RL	2.3E-01	6
DE-N	118	6	< RL	3.3E-01	2.2E-01	2.1E-01	2.3E-01	4.6E-01	4
DE-C	149	8	3.6E-01	< RL	< RL	< RL	< RL	4.8E-01	1
DE-S	90	7	< RL	< RL	< RL	2.2E-01	< RL	3.5E-01	12
DE-E	77	6	< RL	2.2E-01	< RL	< RL	< RL	4.2E-01	4
DE	434	27	2.3E-01	< RL	< RL	< RL	< RL	2.5E-01	1
DK	3	3		< RL			< RL	< RL	5
EE	4	2	< RL			< RL	< RL	< RL	2
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-C	27	7	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	1
ES	79	20	< <i>RL</i>	< RL	< RL	< RL	< RL	< RL	12
FI-N	7	1				7.7E-01	7.7E-01	7.7E-01	10
FI-S	14	2				9.2E-01	9.2E-01	9.2E-01	10
FI	21	3				8.7E-01	8.7E-01	8.7E-01	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN									
GB-WL									
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	12
GB-NI									
GB	28	5	< RL	< RL	< RL	< RL	< RL	< RL	12
GR	12	2	< RL	< RL	< RL	< RL	< RL	< RL	8
HR-A									
HR-C	5	1				< RL	< RL	< RL	12
HR	5	1				< RL	< RL	< RL	12
HU	30	18	< RL	< RL	< RL	< RL	< RL	< RL	6
IE							Δ		
IT-N	45	29	< RL	< RL	< RL	2.0E-01	< RL	3.6E-01	11
IT-C	7	6	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-S	3	2		< RL		< RL	< RL	< RL	6
п	55	37	< <i>RL</i>	< RL	< RL	2.0E-01	< RL	3.2E-01	11
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
LU	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
LV	4	1	< RL	< RL	< RL	5.0E-01	< RL	9.0E-01	11
MT	13	12	< RL	< RL	2.0E-01	< RL	< RL	2.6E-01	10
NL							Δ		
PL-N									
PL-S	2	2				3.7E-01	3.7E-01	3.7E-01	12
PL	2	2				3.7E-01	3.7E-01	3.7E-01	12
РТ	11	1	< RL	< RL	< RL	< RL	< RL	< RL	4
RO-N									
RO-S									
RO									
SE-N	3	1		< RL		1.4E+00	7.4E-01	2.0E+00	11
SE-S	4	2		< RL		2.8E-01	2.3E-01	2.8E-01	10
SE	7	3		< RL		1.4E+00	7.9E-01	2.0E+00	11
SI	5	5	< RL	< RL			< RL	< RL	3
				1					

RL: reporting level for ^{137}Cs In mixed diet, i.e. 2.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

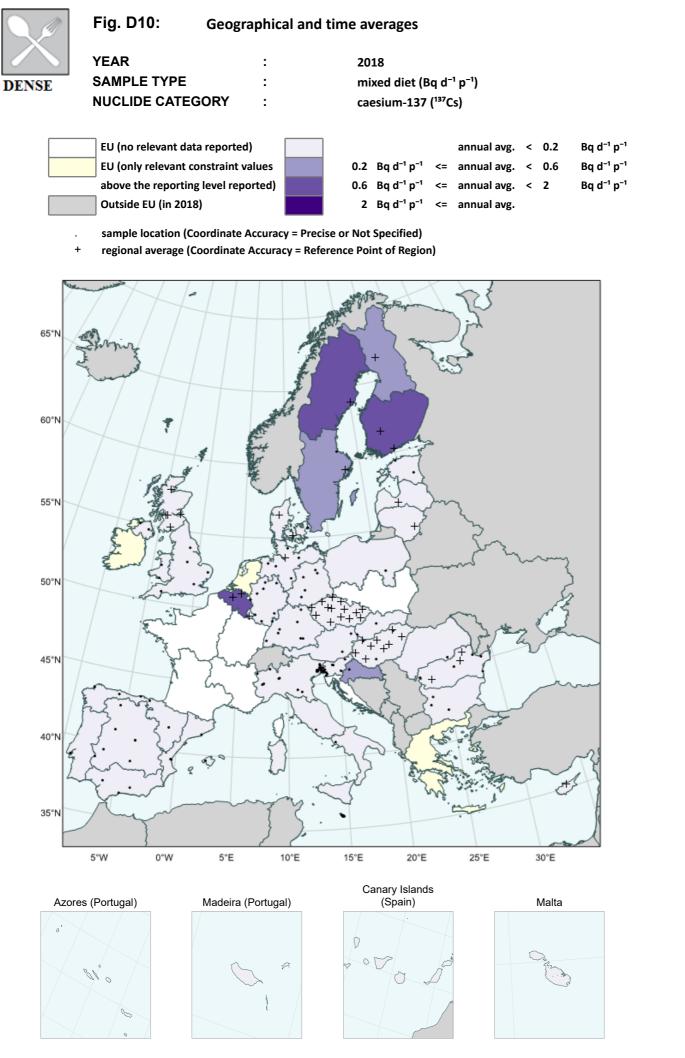
Table D9:Geographical and time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY


2017 mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	24	2	< RL	< RL	< RL	< RL	< RL	< RL	10
BE	11	3	< RL	< RL	< RL	< RL	< RL	< RL	7
BG	15	4	< RL	< RL	2.4E-01	< RL	< RL	4.5E-01	7
CY	50	1	< RL	< RL		< RL	< RL	< RL	10
CZ	42	29	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	112	6	< RL	< RL	< RL	< RL	< RL	2.5E-01	12
DE-C	145	9	< RL	< RL	< RL	< RL	< RL	2.0E-01	4
DE-S	113	8	2.4E-01	5.5E-01	2.6E-01	< RL	3.0E-01	1.0E+00	4
DE-E	76	6	< RL	< RL	< RL	3.9E-01	< RL	6.3E-01	12
DE	446	29	< RL	2.6E-01	< RL	< RL	< RL	4.1E-01	4
DK	3	3		< RL	< RL		< RL	< RL	7
EE	4	2	< RL			< RL	< RL	< RL	2
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-C	27	7	< RL	< RL	< RL	< RL	< RL	< RL	11
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	2
ES	79	20	< RL	< RL	< RL	< RL	< RL	< RL	10
FI-N	7	1				3.3E-01	3.3E-01	3.3E-01	10
FI-S	14	2				6.8E-01	6.8E-01	7.4E-01	11
FI	21	3				6.1E-01	6.1E-01	7.4E-01	11
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL		< RL	< RL	8
GB-WL	5	2	< RL	< RL	< RL	< RL	< RL	< RL	8
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-NI	5	2	< RL	< RL		< RL	< RL	< RL	12
GB	46	14	< RL	< RL	< RL	< RL	< RL	< RL	12
GR	1	1		2.0E-01			2.0E-01	2.0E-01	6
HR-A									
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
HU	35	13	< RL	< RL	< RL	< RL	< RL	2.0E-01	1
IE	2	1	8.6E-01		2.4E-01		5.5E-01	8.6E-01	1
IT-N	53	29	< RL	< RL	< RL	< RL	< RL	2.2E-01	2
IT-C	13	11	< RL	2.6E-01	< RL	< RL	< RL	4.0E-01	6
IT-S	11	11	< RL	< <i>RL</i>	3.4E-01	< RL	2.2E-01	3.4E-01	7
IT	77	51	< RL	2.0E-01	< RL	< RL	< RL	2.4E-01	6
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
LU	10	1	< RL	< RL	< RL	< RL	< RL	< RL	3
LV	4	1	1.9E+00		1.5E+00	2.5E+00	2.0E+00	3.7E+00	3
MT	13	10	< RL	< RL	< RL	< RL	< RL	2.4E-01	6
NL						. 5/	Δ		10
PL-N	1	1	0.75.04	0.75.04	0.75.04	< RL	< RL	< RL	12
PL-S	2	2	3.7E-01	3.7E-01	3.7E-01	3.7E-01	3.7E-01	3.7E-01	12
PL	3	3	3.7E-01	3.7E-01	3.7E-01	3.4E-01	3.6E-01	3.7E-01	1
PT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	1
RO-N	1	1	< RL	< RL	< RL	< RL	< RL	< RL	3
RO-S	2	2	< RL	< RL	< RL	1.6E+00	4.2E-01	1.6E+00	10
RO	3	3	< RL	< RL	< RL	3.5E-01	< RL	1.0E+00	10
SE-N	3	1		3.6E+00		1.2E+00	2.4E+00	3.6E+00	5
SE-S	5	2		4.4E-01		3.5E-01	3.9E-01	4.4E-01	5
SE	8	3		1.5E+00		6.4E-01	1.1E+00	1.5E+00	5
SI	5	5	< RL	< RL			< RL	< RL	2
SK	12	3	< RL	< RL	< RL	< RL	< RL	< RL	9

RL: reporting level for ^{137}Cs In mixed diet, i.e. 2.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

211

Table D10: Geographical and time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2018 mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
	ĺ	Í	quarter	quarter	quarter	quarter	average	max	
AT	25	2	< RL	< RL	< RL	< RL	< RL	< RL	7
BE	2	2			1.0E+00	1	1.0E+00	1.5E+00	9
BG	10	3	< RL	2.0E-01	< RL	2.3E-01	< RL	4.1E-01	11
CY	51	1	< RL	< RL	< RL		< RL	< RL	3
CZ	20	14	< RL	2.3E-01	< RL	< RL	< RL	3.3E-01	6
DE-N	117	6	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-C	170	9	< RL	< RL	< RL	4.1E-01	< RL	1.0E+00	12
DE-S	101	7	< RL	< RL	2.0E-01	< RL	< RL	3.0E-01	8
DE-E	69	5	< RL	< RL	< RL	< RL	< RL	2.1E-01	10
DE	457	27	< RL	< RL	< RL	2.3E-01	< RL	4.2E-01	12
DK	3	3		< RL	< RL		< RL	< RL	4
EE	4	2	< RL			< RL	< RL	< RL	2
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-C	28	7	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES	80	20	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-N	7	1				4.7E-01	4.7E-01	4.7E-01	10
FI-S	14	2				8.4E-01	8.4E-01	8.4E-01	10
FI	21	3				7.2E-01	7.2E-01	7.2E-01	10
FR-NW				1		1			
FR-NE									
FR-SW									
FR-SE									
FR	1								
GB-EN	8	5	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-WL	5	2	< RL	< RL		< RL	< RL	< RL	1
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-NI	5	2		< RL		< RL	< RL	< RL	5
GB	46	14	< RL	< RL	< RL	< RL	< RL	< RL	4
GR							Δ		
HR-A									
HR-C	5	1				2.6E-01	2.6E-01	4.3E-01	10
HR	5	1				2.6E-01	2.6E-01	4.3E-01	10
HU	23	12	< RL	< RL	< RL	< RL	< RL	2.2E-01	1
IE							Δ		
IT-N	57	31	< RL	< RL	< RL	< RL	< RL	2.3E-01	5
IT-C	3	1	< RL	< RL	< RL	< RL	< RL	< RL	3
IT-S	1	1	< RL				< RL	< RL	3
п	61	33	< RL	< RL	< RL	< RL	< RL	2.2E-01	5
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	12
LU	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
LV	4	1	< RL		< RL	< RL	< RL	< RL	3
МТ	11	10	< RL	< RL	< RL	< RL	< RL	< RL	11
NL		i					Δ		
PL-N	1	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	l								
PL	1	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	1
RO-N	8	1	< RL	< RL	< RL	< RL	< RL	< RL	3
RO-S	29	8	< RL	< RL	< RL	< RL	< RL	< RL	2
RO	37	9	< RL	< RL	< RL	< RL	< RL	< RL	2
SE-N	3	1		< RL		1.5E+00	7.8E-01	2.1E+00	11
SE-S	4	2		< RL		3.1E-01	2.1E-01	5.2E-01	10
SE	7	3		< RL		1.2E+00	6.4E-01	2.1E+00	12
SI	5	5	< RL	< RL			< RL	< RL	4
SK	8	2	< RL	< RL	< RL	< RL	< RL	< RL	2
	, ,	-							_

RL: reporting level for ¹³⁷Cs In mixed diet, i.e. 2.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

	Fig. D11:	Geographical and t	ime averages	
	YEAR	:	2019	
DENSE	SAMPLE TYPE	: GORY :	mixed diet (Bq d ⁻¹ p ⁻¹) caesium-137 (¹³⁷ Cs)	
	EU (no relevant da EU (only relevant c above the reportin Outside EU (in 201	constraint values	annı 0.2 Bq d ⁻¹ p ⁻¹ <= annı	ual avg. < 2 Bq d ⁻¹ p ⁻¹
+		Coordinate Accuracy = Precise Coordinate Accuracy = Reference		
65°N	Shmin			3
60°N 55°N	T. Part	The second second second second second second second second second second second second second second second se	+ +	
50°N			and and a	in the second se
45°N	and the second	A dia		
40°N 40°N 40°N 40°N 40°N 40°N 40°N 40°N		and the second		the state of the s
	5°W 0°W	5°E 10°E	15°E 20°E 25	°E 30°E
Azore	s (Portugal)	Madeira (Portugal)	Canary Islands (Spain)	Malta
o			P . T 0 J	

Table D11: Geographical and time averages

:

:

:

YEAR SAMPLE TYPE NUCLIDE CATEGORY

2019 mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	29	2	< RL	< RL	< RL	< RL	< RL	< RL	2
BE	1	1	< RL				< RL	< RL	1
BG	14	4	< RL	5.6E-01	4.7E-01	< RL	3.3E-01	9.2E-01	6
CY	48	1	< RL	< RL	< RL	< RL	< RL	< RL	5
CZ	3	3	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-N	112	6	< RL	< RL	2.0E-01	2.9E-01	2.0E-01	3.6E-01	10
DE-C	158	9	< RL	< RL	< RL	< RL	< RL	< RL	5
DE-S	105	6	< RL	3.5E-01	< RL	< RL	< RL	7.7E-01	4
DE-E	63	4	< RL	< RL	< RL	< RL	< RL	2.3E-01	9
DE	438	25	< RL	2.1E-01	< RL	< RL	< RL	3.6E-01	4
DK	3	3		< RL	< RL		< RL	< RL	5
EE	4	2	< RL			2.6E-01	< RL	2.6E-01	10
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-C	28	7	< RL	< RL	< RL	< RL	< RL	< RL	4
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	5
ES	80	20	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-N	7	1				7.4E-01	7.4E-01	7.4E-01	10
FI-S	14	2				5.6E-01	5.6E-01	5.6E-01	10
FI	21	3				6.2E-01	6.2E-01	6.2E-01	10
FR-NW									
FR-NE	1								
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL	< RL	< RL	< RL	11
GB-WL	5	2	< RL	< RL	< RL		< RL	< RL	6
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI	5	2	< RL	< RL	< RL		< RL	2.7E-01	8
GB	46	14	< RL	< RL	< RL	< RL	< RL	< RL	8
GR							Δ		
HR-A									
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
HU	16	6	< RL	< RL	< RL	< RL	< RL	< RL	7
IE							Δ		
IT-N	45	25	< RL	2.1E-01	< RL	< RL	< RL	2.6E-01	6
IT-C	8	4	< RL	< RL	< RL	< RL	< RL	< RL	11
IT-S									
ΙТ	53	29	< RL	< RL	< RL	< RL	< RL	2.1E-01	6
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	8
LU	10	1	< RL	< RL	< RL	< RL	< RL	< RL	12
LV	3	1		< RL	< RL	1	< RL	< RL	4
МТ	12	11	2.4E-01	2.2E-01	< RL	< RL	2.0E-01	3.1E-01	1
NL				1		1	Δ	i	
PL-N				1		1			
PL-S									
PL									
PT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	11
RO-N	2	1	< RL		< RL		< <i>RL</i>	< RL	3
RO-S	38	15	< RL	< RL	< RL	< RL	< RL	< RL	11
RO	40	16	< RL	< RL	< RL	< RL	< RL	< RL	11
SE-N	3	1		2.8E-01		1.3E+00	7.9E-01	2.5E+00	12
SE-S	5	2	2.0E-01	< RL		< RL	< RL	2.0E-01	2
SE-S	8	3	2.0E-01 2.0E-01	2.1E-01		5.2E-01	3.1E-01	1.4E+00	12
SI		~	2.02 07			5.22 07	5.72.07		
SK	11	3	< RL	< RL	< RL	< RL	< RL	3.5E-01	6
		~	- / \L					0.02 07	

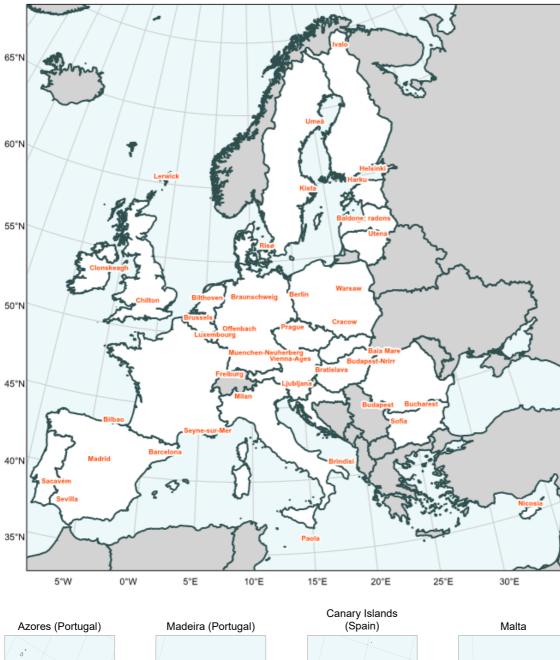
RL: reporting level for ¹³⁷Cs In mixed diet, i.e. 2.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

DENSE	Fig. D12: YEAR SAMPLE TYPE NUCLIDE CATEO	Geographical and t : : GORY :	ime averages 2020 mixed diet (Bq d ⁻¹ p ⁻ caesium-137 (¹³⁷ Cs)	1)
	EU (no relevant dat EU (only relevant co above the reporting Outside EU (in 2020	onstraint values glevel reported)	0.2 Bq d ⁻¹ p ⁻¹ <= an 0.6 Bq d ⁻¹ p ⁻¹ <= an	nual avg. < 0.2 Bq d ⁻¹ p ⁻¹ nual avg. < 0.6 Bq d ⁻¹ p ⁻¹ nual avg. < 2 Bq d ⁻¹ p ⁻¹ nual avg.
+		oordinate Accuracy = Precis oordinate Accuracy = Refer		
65°N	Shining .		+	
55°N				Zange Stand
45°N		Indiana -	++++ + + + + + + + + + + + + + + + + +	a an
40°N		an dir		A CONTRACT OF A
35°N	5°W 0°W	5°E 10°E	15°E 20°E	25°E 30°E
۵zore	s (Portugal)	Madeira (Portugal)	Canary Islands (Spain)	Malta

Table D12: Geographical and time averages

YEAR : SAMPLE TYPE : NUCLIDE CATEGORY :


2020 mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)

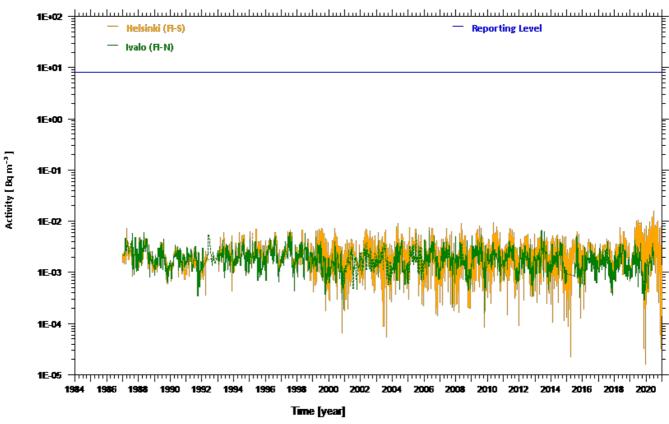
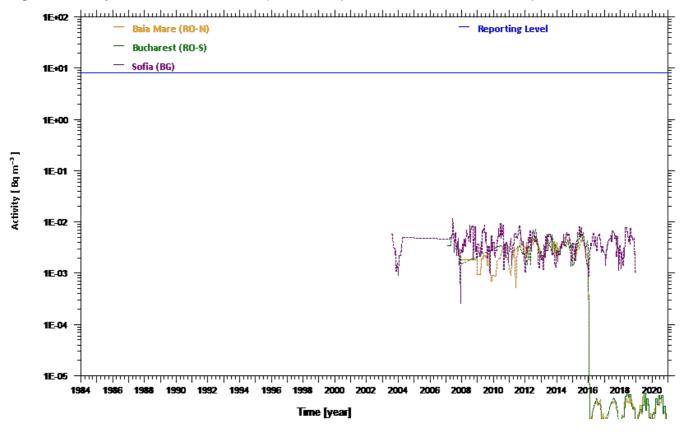
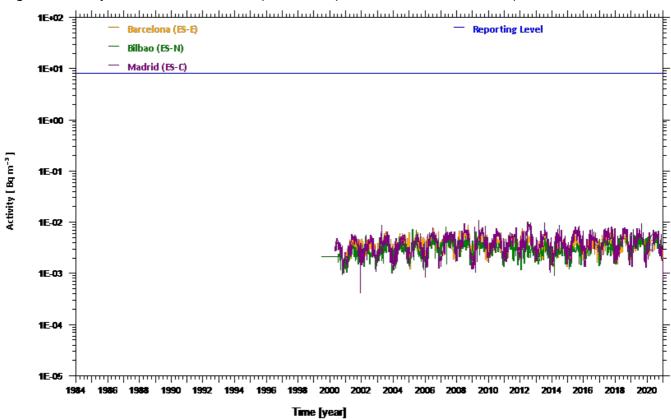
Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
		Í	quarter	quarter	quarter	quarter	average	max	
AT	23	2	< RL	< RL	< RL	< RL	< RL	< RL	6
BE	1	1			1.4E+00		1.4E+00	1.4E+00	8
BG									
CY	43	1	< RL	< RL		< RL	< RL	< RL	10
CZ	22	14	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-N	1	1	< RL				< RL	< RL	1
DE-C							Δ		
DE-S									
DE-E									
DE	1	1	< RL				< RL	< RL	1
DK	3	3			< RL		< RL	< RL	8
EE	4	2	< RL			< RL	< RL	< RL	3
ES-N	18	5	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-C	26	7	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	7
ES	76	20	< RL	< RL	< RL	< RL	< RL	< RL	1
FI-N	7	1				9.8E-01	9.8E-01	9.8E-01	11
FI-S	14	2			1.0E+00	1.1E+00	1.1E+00	1.1E+00	10
FI	21	3			1.0E+00	1.0E+00	1.0E+00	1.1E+00	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN									
GB-WL									
GB-SC	23	5	< RL	< RL	< RL	< RL	< RL	< RL	9
GB-NI									-
GB	23	5	< RL	< RL	< RL	< RL	< RL	< RL	9
GR	3	1	< <i>RL</i>			< RL	< RL	< RL	12
HR-A									
HR-C	5	1				< RL	< RL	< RL	12
HR	5	1				< RL	< RL	< RL	12
HU	8	3		< RL	< RL		< RL	< RL	9
IE	1	1		3.5E-01			3.5E-01	3.5E-01	6
IT-N	25	17	< RL	< RL	< RL	< RL	< RL	< RL	6
IT-C	2	1			< RL	< RL	< RL	< RL	7
IT-S									
IT	27	18	< RL	< RL	< RL	< RL	< RL	< RL	6
	8	1	< RL	< RL	< RL	< RL	< RL	< RL	10
LU	9	1	< RL	< RL	< RL	< RL	< RL	< RL	2
LV	3	1	5.2E-01		< RL	< RL	2.8E-01	5.2E-01	3
MT	8	8	2.1E-01	2.0E-01	2.0E-01	2.0E-01	2.0E-01	3.0E-01	1
NL		-					Δ		
PL-N							_		
PL-S									
PL									
PT									
RO-N									
RO-N RO-S	15	4	< RL	< RL	< RL	< RL	< RL	< RL	5
RO	15	4	< RL	< RL	< RL	< RL	< RL	< RL	5
SE-N	3	1		3.6E-01		2.5E+00	1.4E+00	2.6E+00	12
SE-S	4	2		< RL		< RL	< RL	< RL	6
SE	7	3		< RL		1.7E+00	9.1E-01	2.6E+00	12
SI									
SK	6	2	< RL	< RL		< RL	< RL	< RL	10

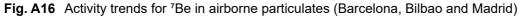
RL: reporting level for ¹³⁷Cs In mixed diet, i.e. 2.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

airborne particulates (Bq m⁻³) beryllium-7 (⁷Be)

:


Fig. A15 Activity trends for 7Be in airborne particulates (Baia Mare, Bucharest and Sofia)

airborne particulates (Bq m⁻³) beryllium-7 (⁷Be)

SPARSE

:

Fig. A17 Activity trends for 'Be in airborne particulates (Milan and Seyne-sur-Mer)

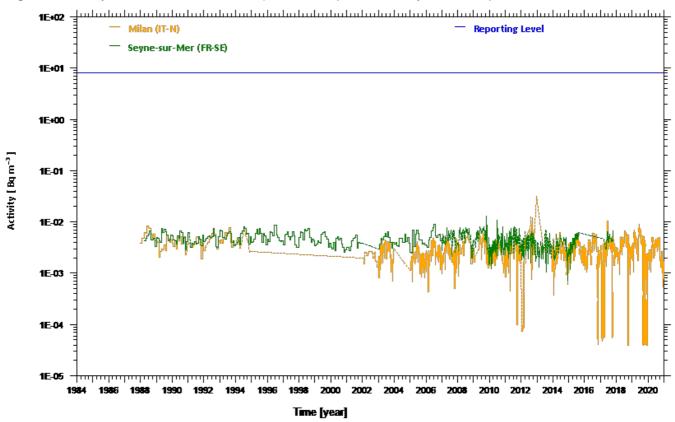


Fig. A18 Activity trends for ⁷Be in airborne particulates (La Laguna-Tenerife, Sacavém and Sevilla)

:

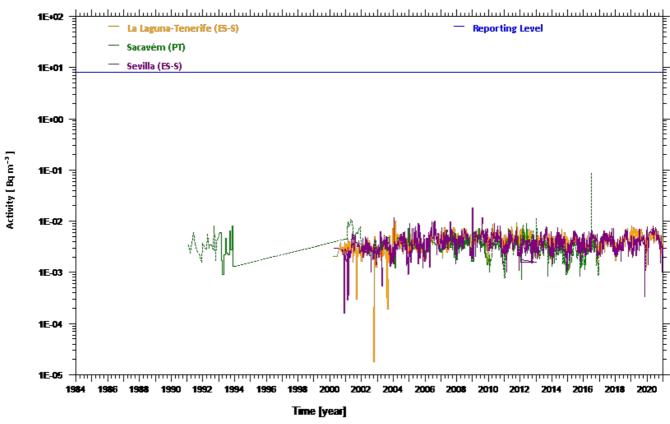
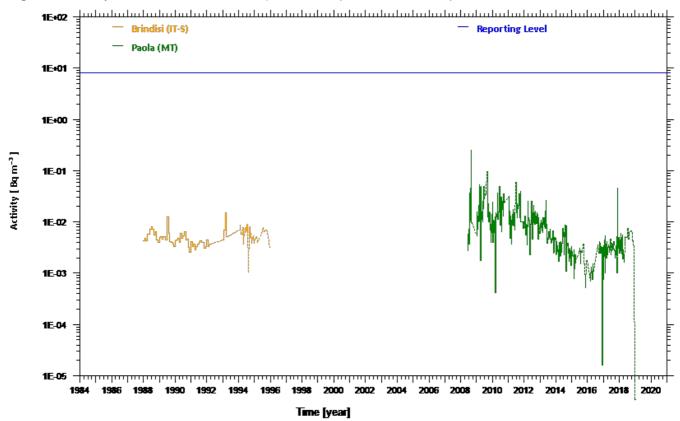



Fig. A19 Activity trends for 'Be in airborne particulates (Brindisi and Paola)

airborne particulates (Bq m⁻³) beryllium-7 (⁷Be)

SPARSE

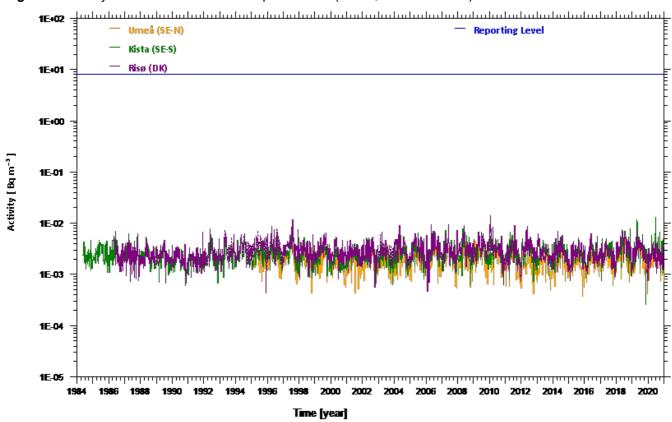
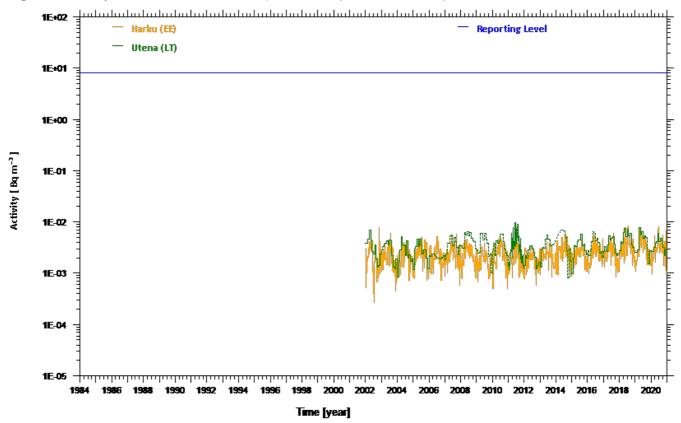



Fig. A20 Activity trends for 7Be in airborne particulates (Umeå, Kista and Risø)

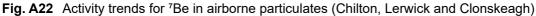
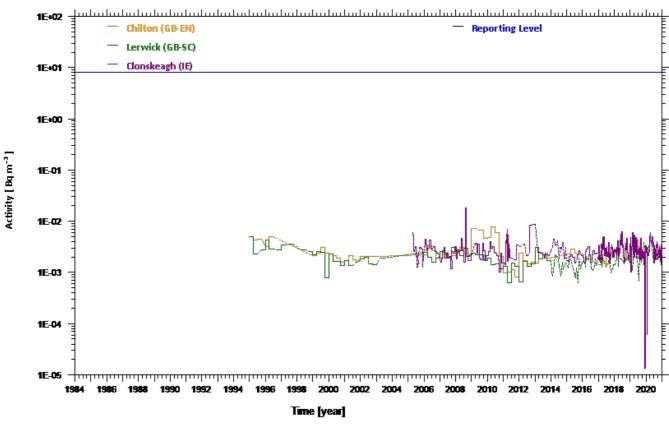
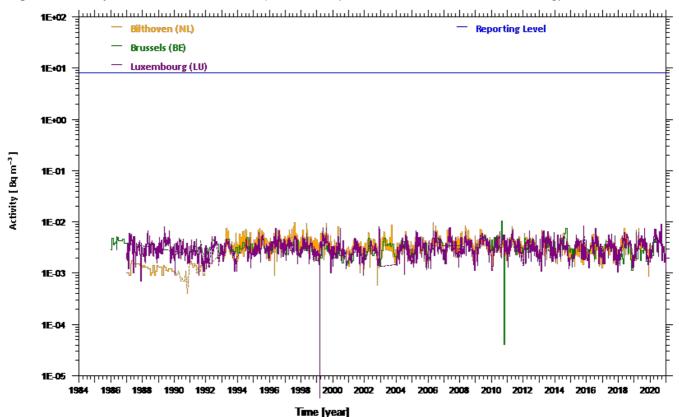

:

Fig. A21 Activity trends for 7Be in airborne particulates (Harku and Utena)

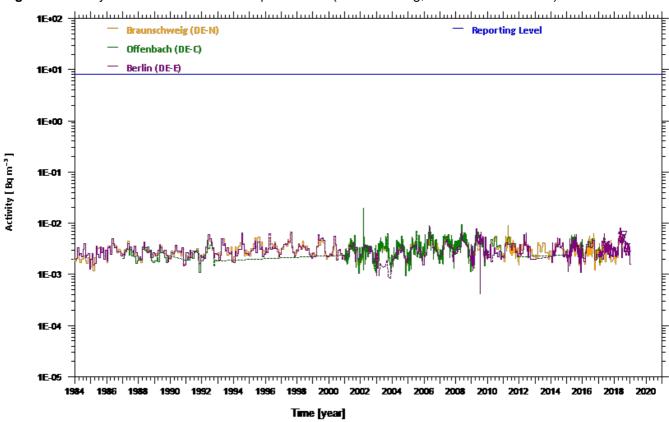


airborne particulates (Bq m⁻³) beryllium-7 (⁷Be)



:

:



* The 7Be results for Bilthoven between 1987 and 1992 are underestimates due to a different sampling procedure and sample treatment

airborne particulates (Bq m⁻³) beryllium-7 (⁷Be)

Fig. A24 Activity trends for ⁷Be in airborne particulates (Braunschweig, Offenbach and Berlin)

:

Fig. A25 Activity trends for ⁷Be in airborne particulates (Warsaw, Cracow and Prague)

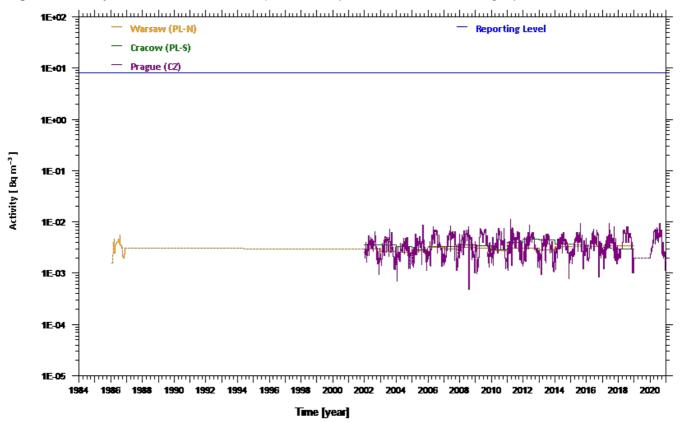


Fig. A26 Activity trends for ⁷Be in airborne particulates (Freiburg, Ljubljana and Muenchen-Neuherberg)

:

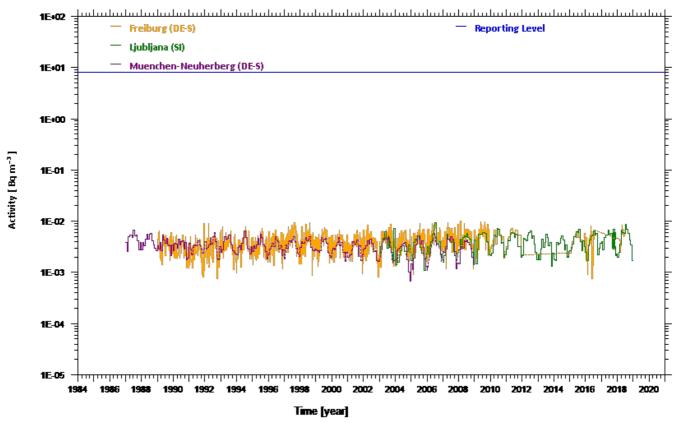
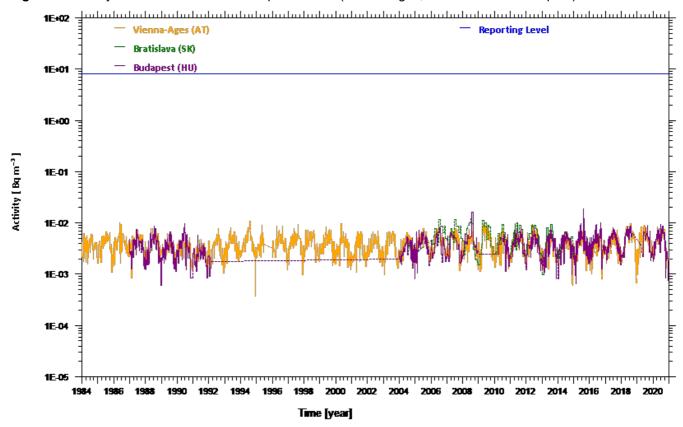



Fig. A27 Activity trends for 7Be in airborne particulates (Vienna-Ages, Bratislava and Budapest)

airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

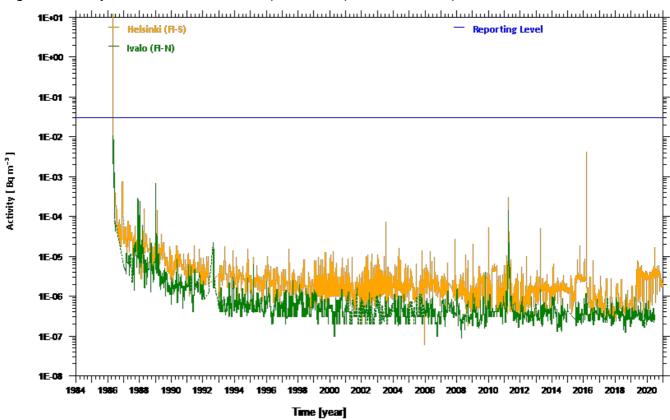
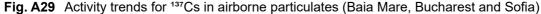
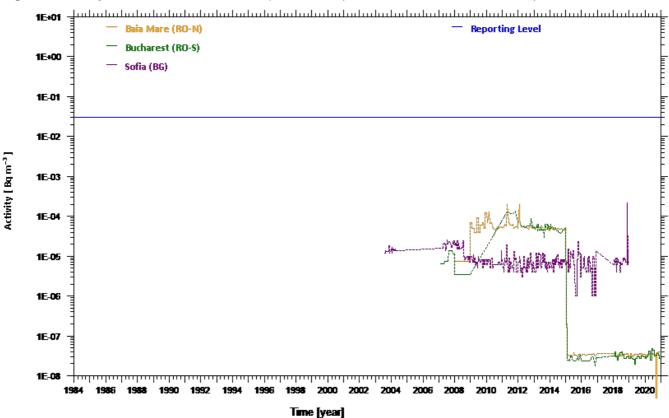
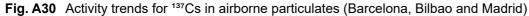
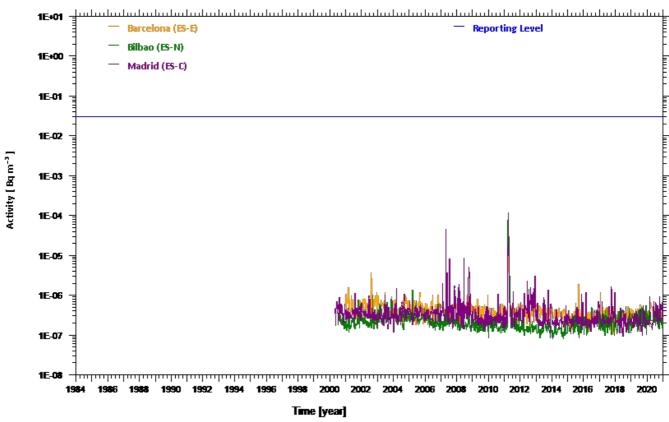
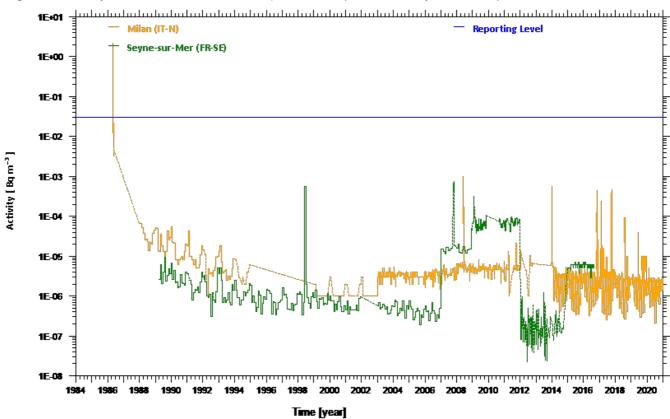




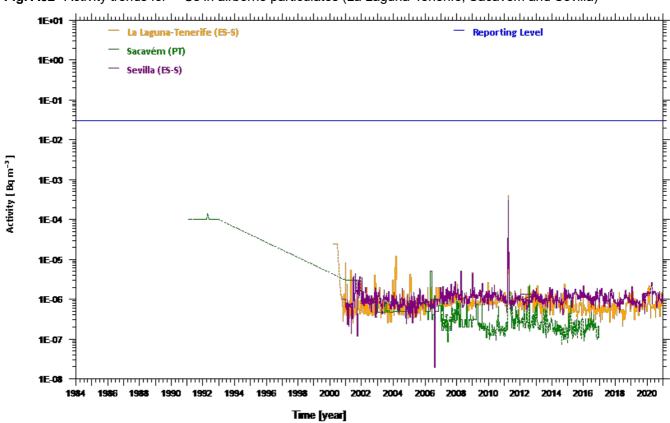
Fig. A28 Activity trends for ¹³⁷Cs in airborne particulates (Helsinki and Ivalo)

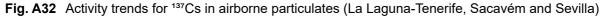

:



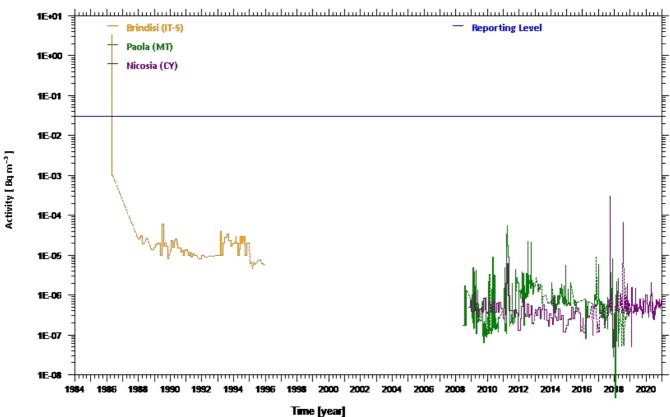

airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

1

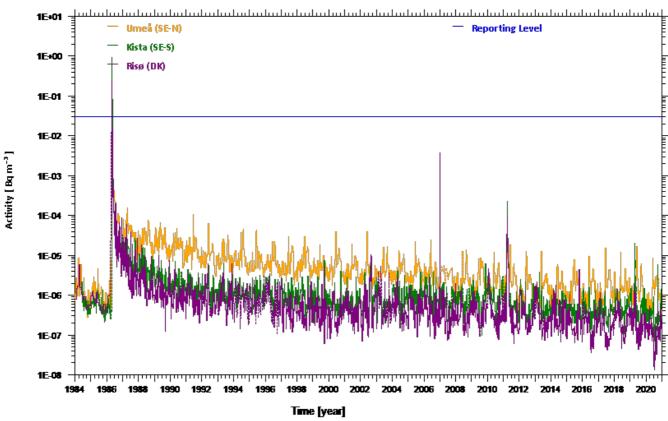




airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)



1




airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

1

airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)

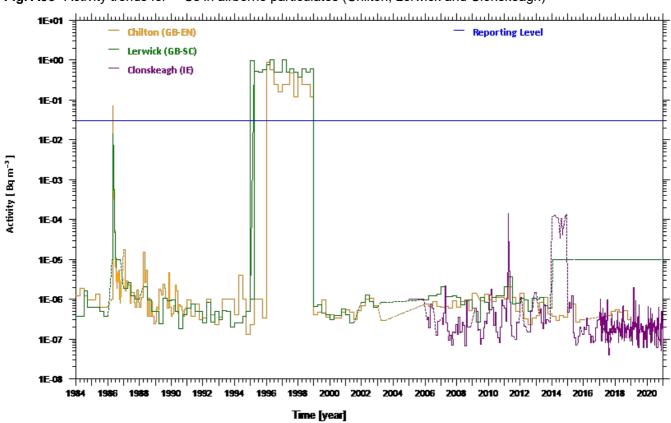
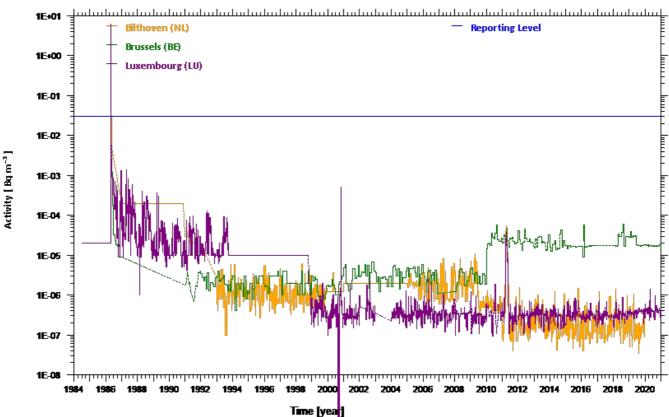
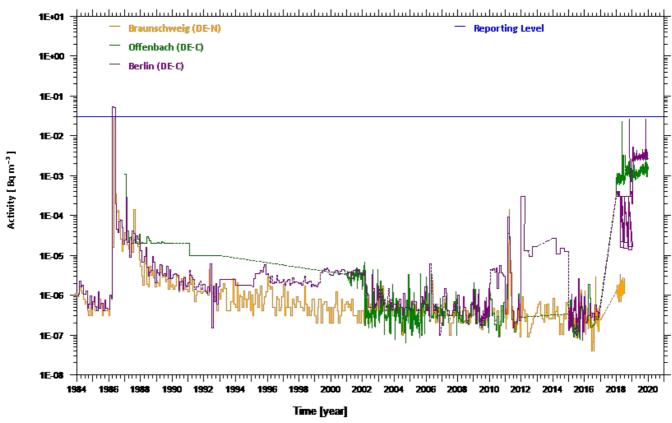
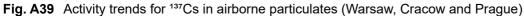
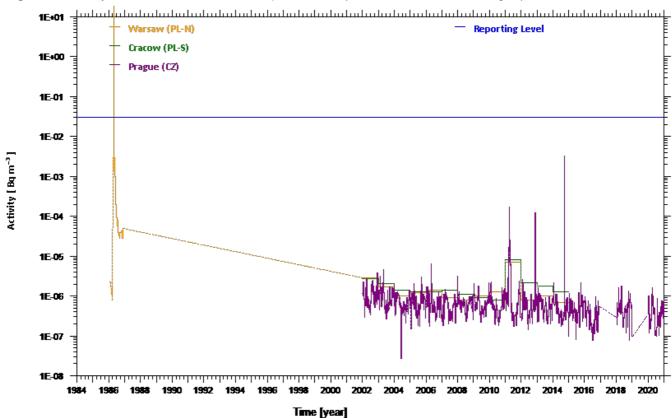



Fig. A36 Activity trends for ¹³⁷Cs in airborne particulates (Chilton, Lerwick and Clonskeagh)

1

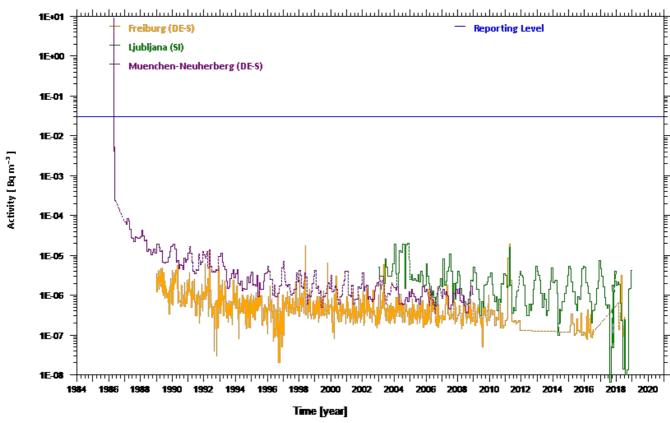
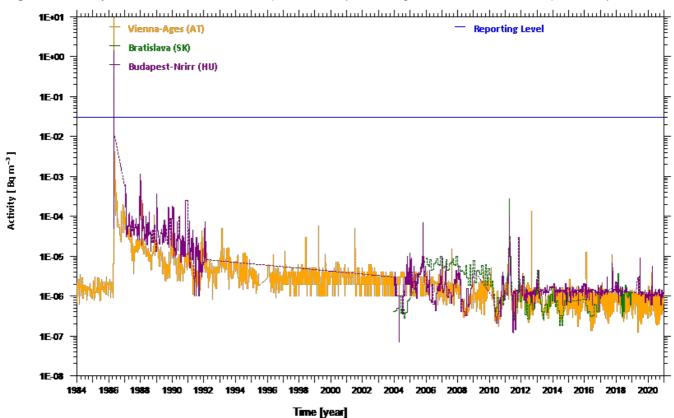


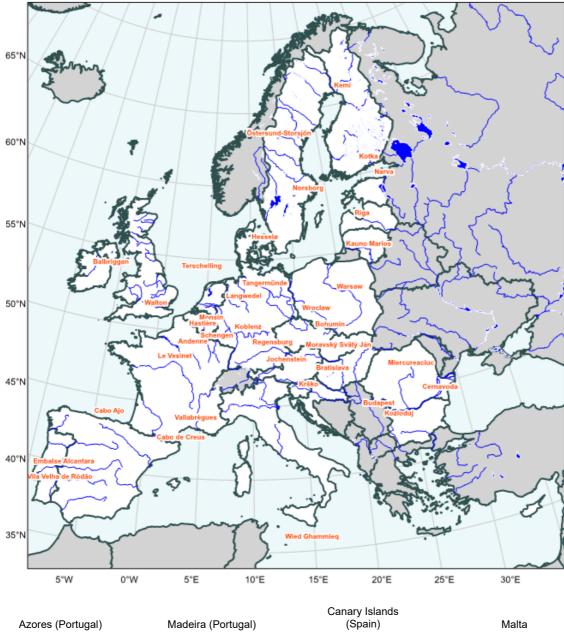

airborne particulates (Bq m⁻³) caesium-137 (¹³⁷Cs)


Fig. A38 Activity trends for ¹³⁷Cs in airborne particulates (Braunschweig, Offenbach and Berlin)

1

÷


Fig. A40 Activity trends for ¹³⁷Cs in airborne particulates (Freiburg, Ljubljana and Muenchen-Neuherberg)

1

Fig. S28 Activity trends for ¹³⁷Cs in surface water (Langwedel, Koblenz and Tangermünde)

1

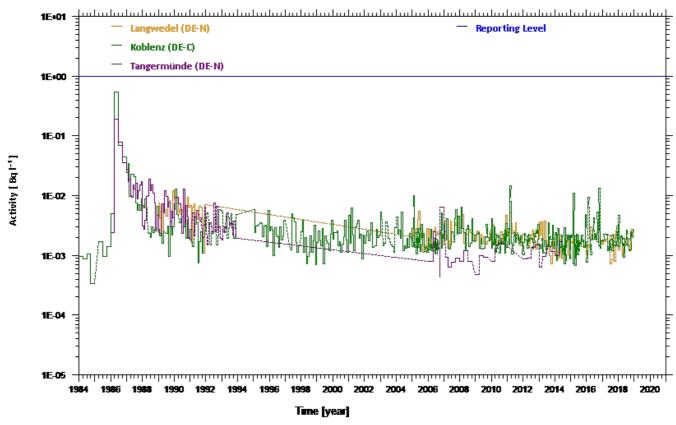
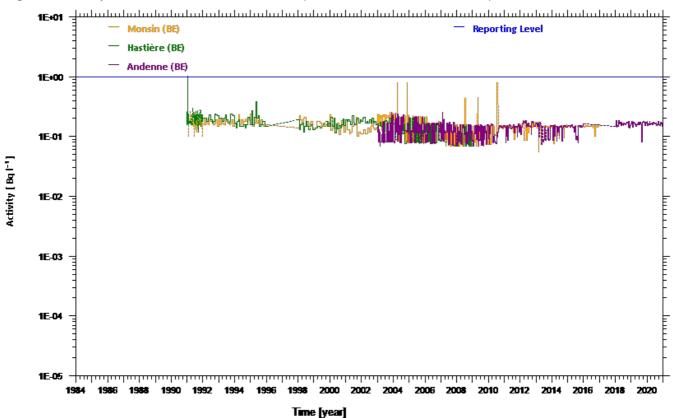
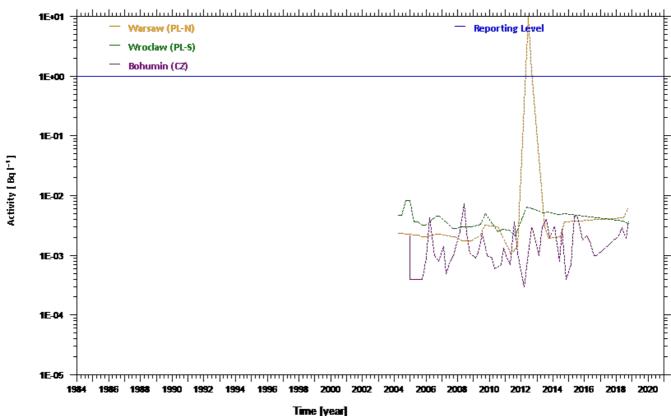
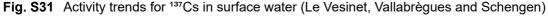
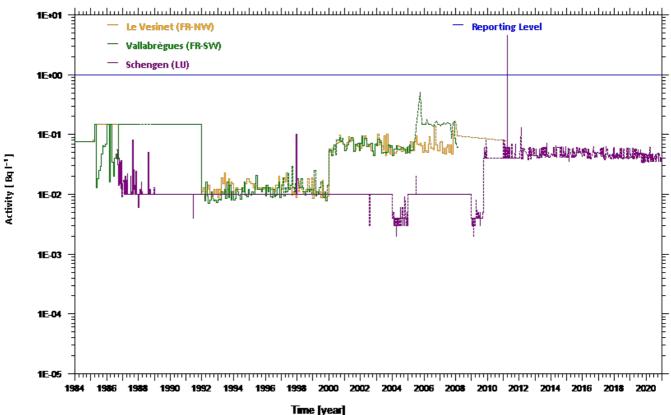
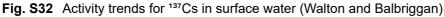
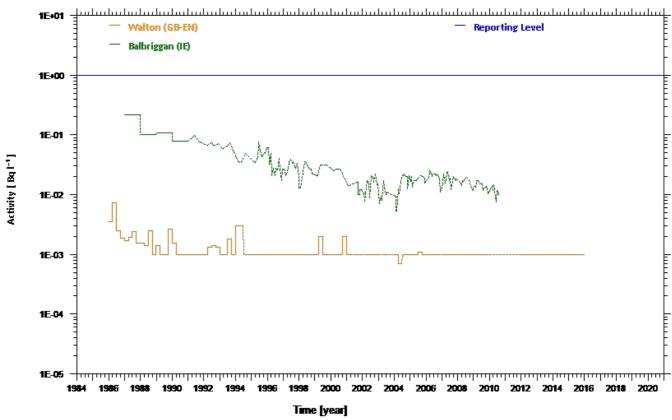




Fig. S29 Activity trends for ¹³⁷Cs in surface water (Monsin, Hastière and Andenne)

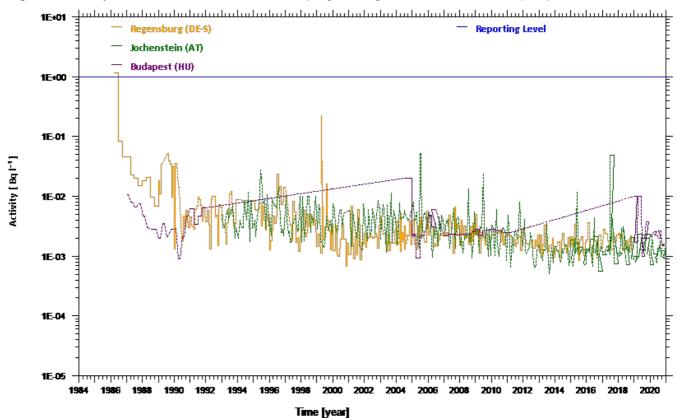

surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)


SPARSE


:



SPARSE


surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

:

Activity trends		
SAMPLE TYPE	:	surface water (Bq l ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)

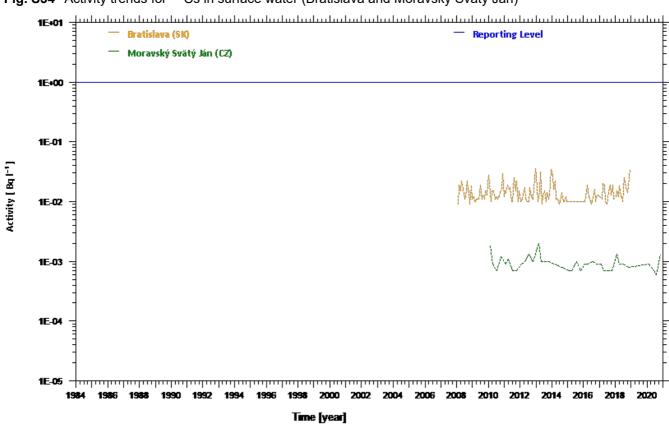
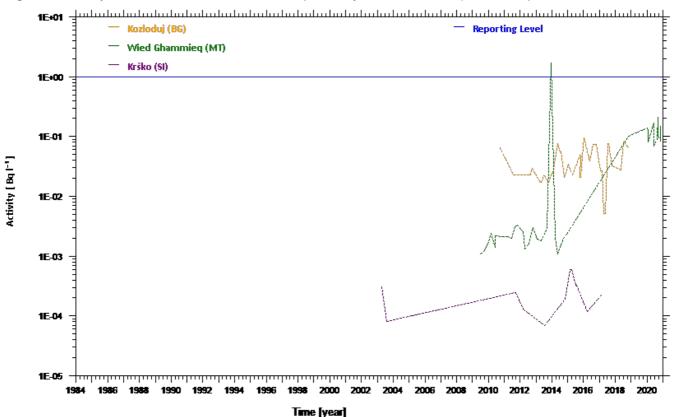
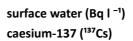
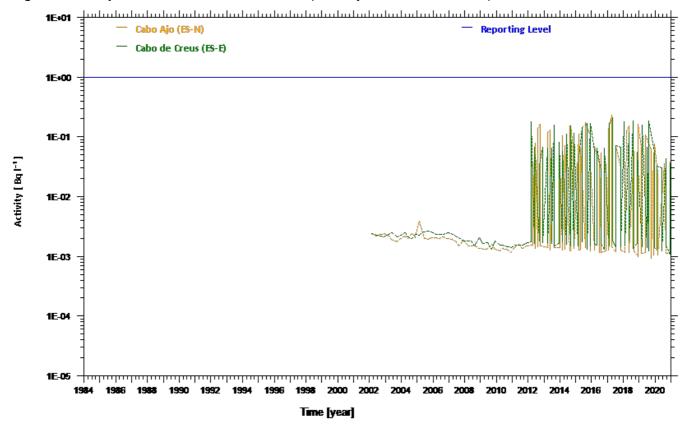
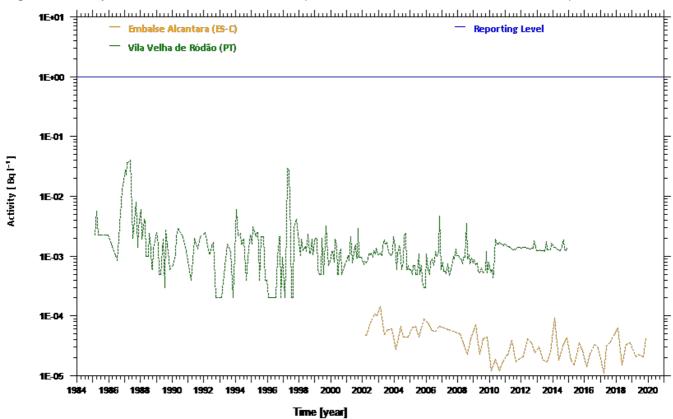




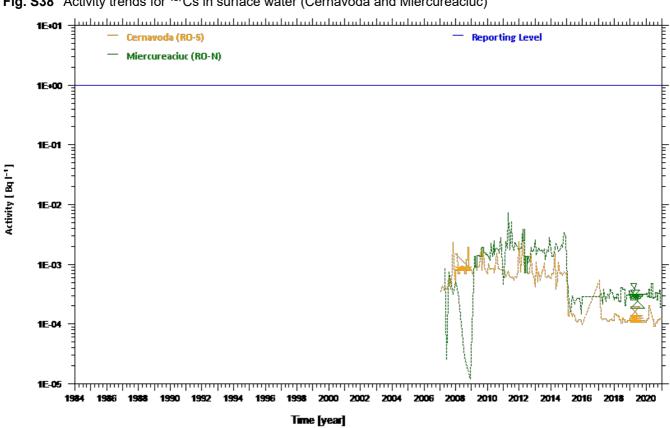
Fig. S34 Activity trends for ¹³⁷Cs in surface water (Bratislava and Moravský Svätý Ján)

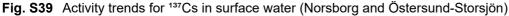

SPARSE

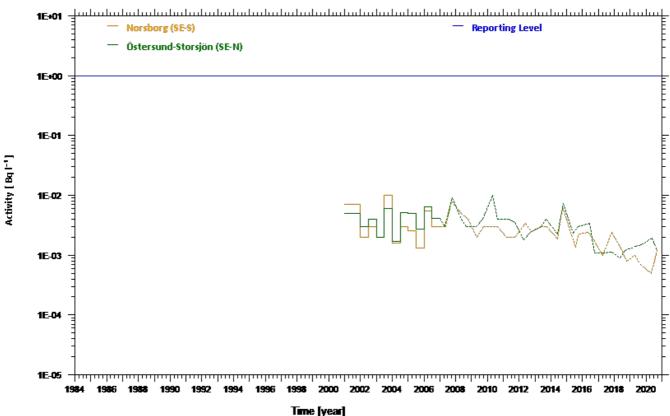

Fig. S36 Activity trends for ¹³⁷Cs in surface water (Cabo Ajo and Cabo de Creus)

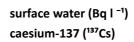
:

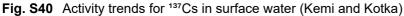
:

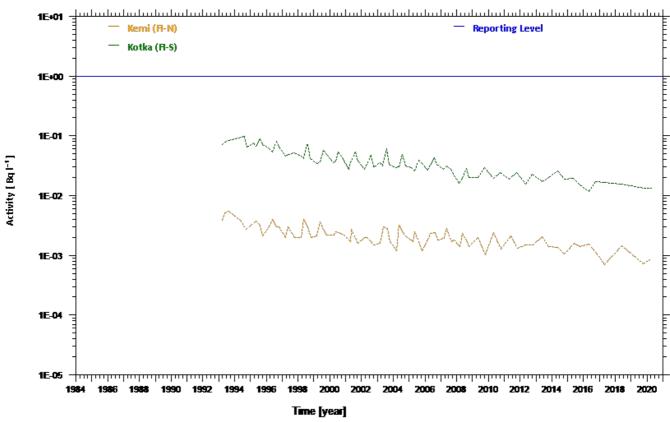


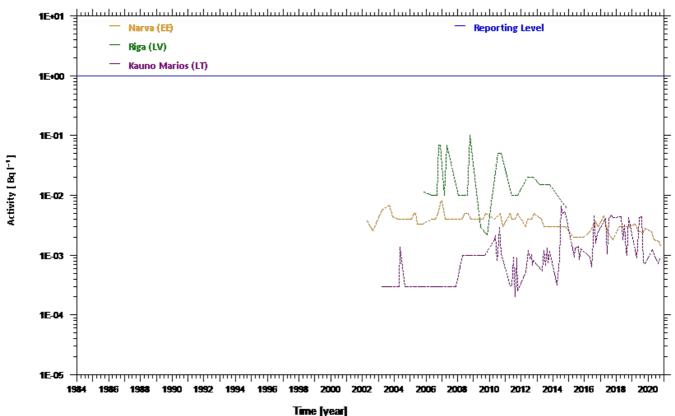

240


Activity trends		
SAMPLE TYPE	:	surface water (Bq l ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)

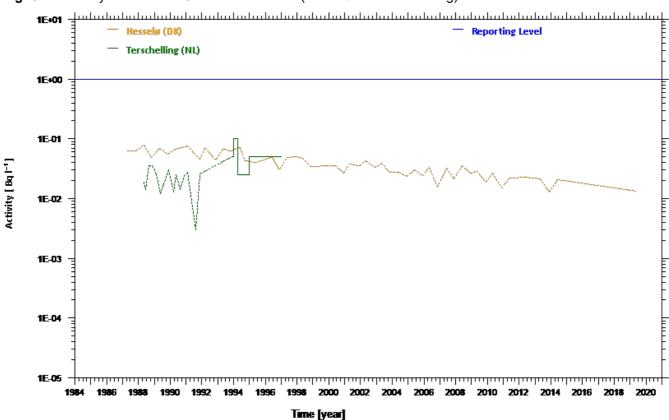








:



surface water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)



Fig. S42 Activity trends for ¹³⁷Cs in surface water (Hesselø and Terschelling)

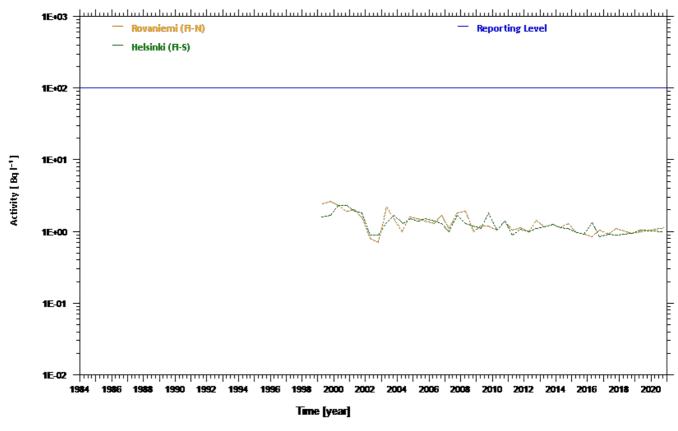
:

OLa La

Ò

p.

100





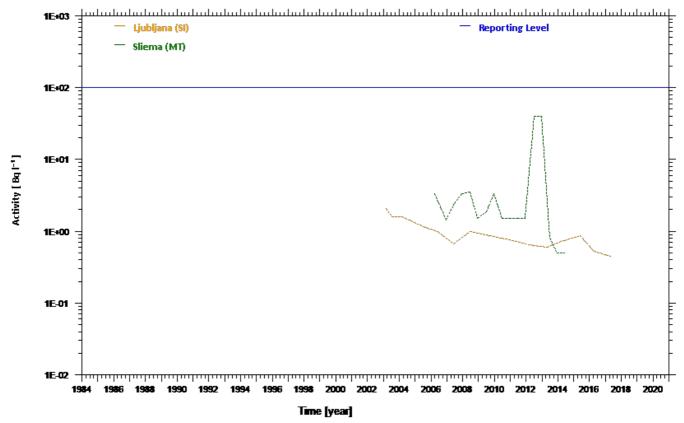
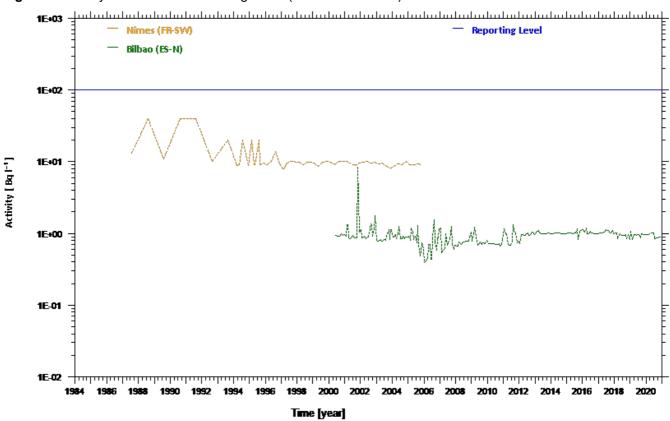

drinking water (Bq I ⁻¹) tritium (³H)

Fig. W20 Activity trends for ³H in drinking water (Rovaniemi and Helsinki)

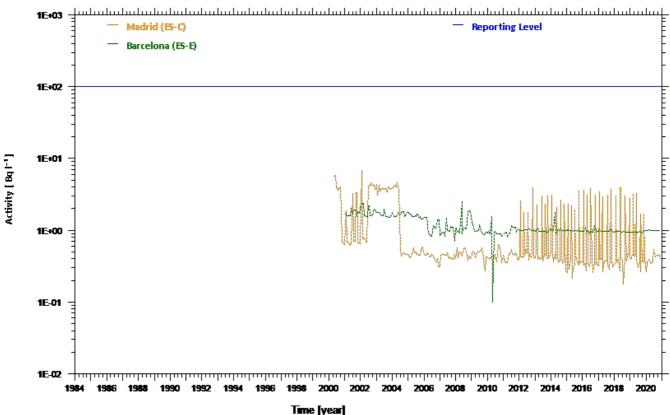
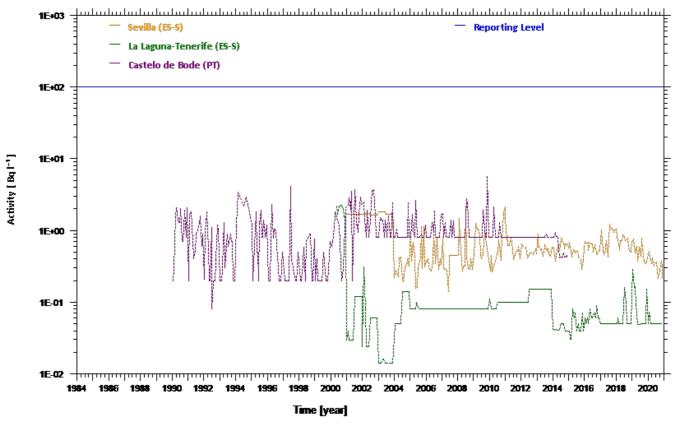
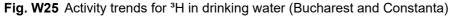
:



drinking water (Bq I⁻¹) tritium (³H)

Fig. W22 Activity trends for ³H in drinking water (Nîmes and Bilbao)

:

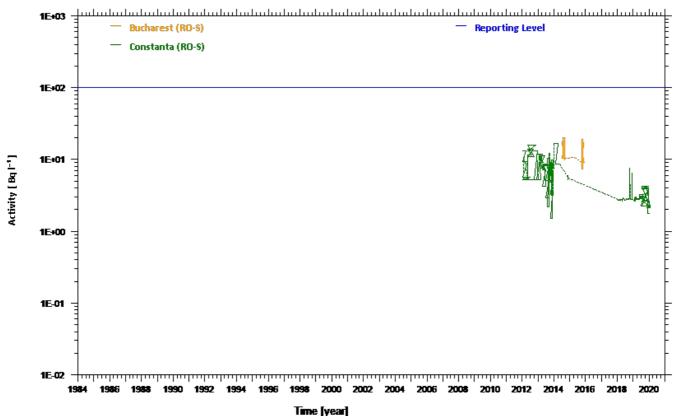
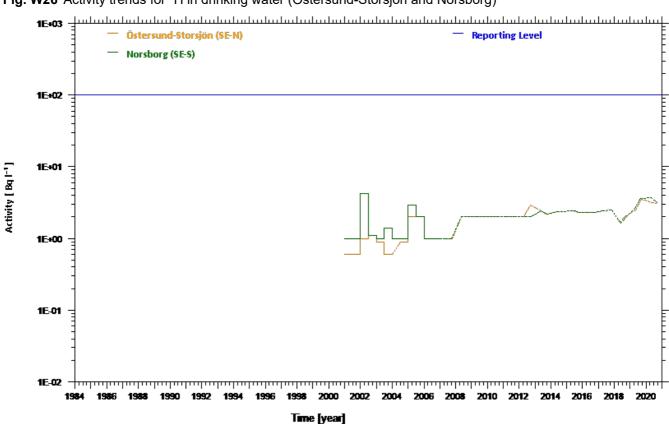
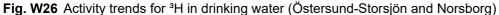
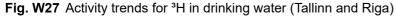


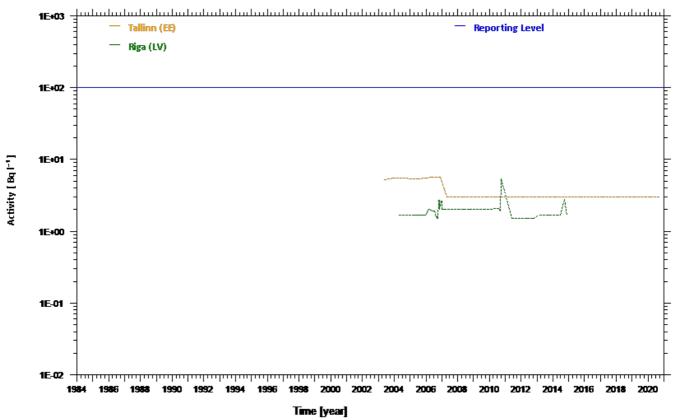
Fig. W24 Activity trends for ³H in drinking water (Sevilla, La Laguna-Tenerife and Castelo de Bode)

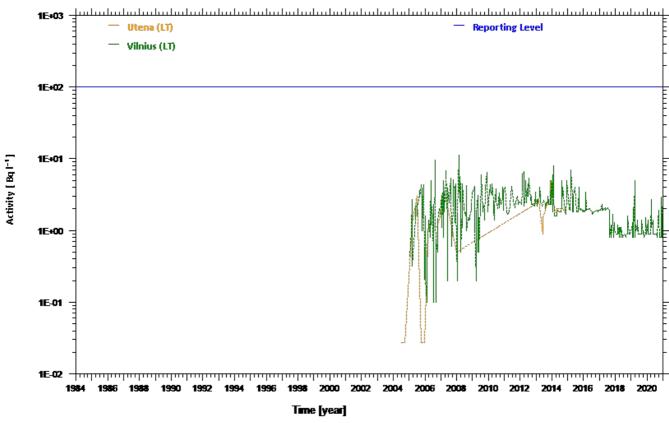
1

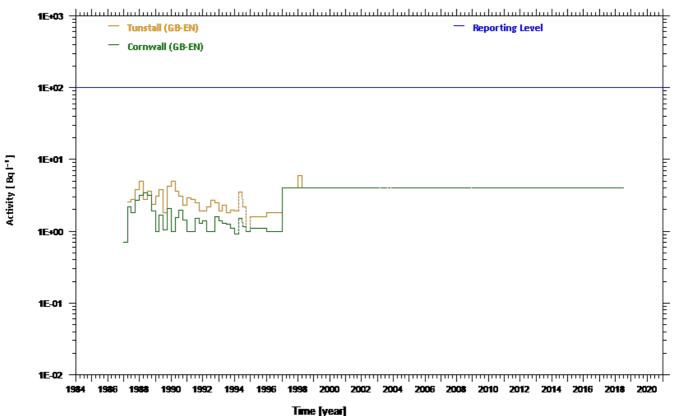







Activity trends		
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	tritium (³ H)




drinking water (Bq I ⁻¹) tritium (³H)

:

Activity trends		
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	tritium (³ H)

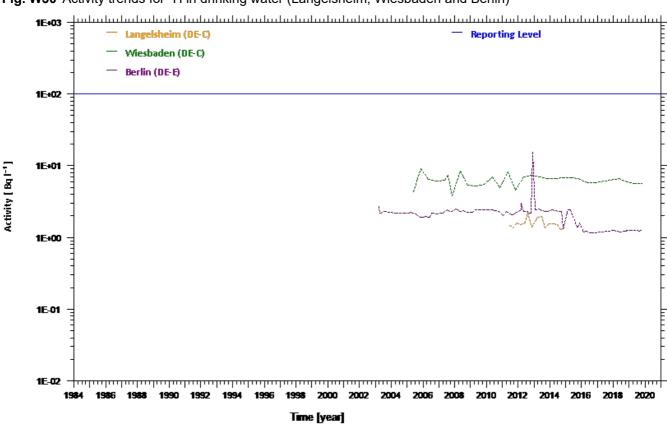
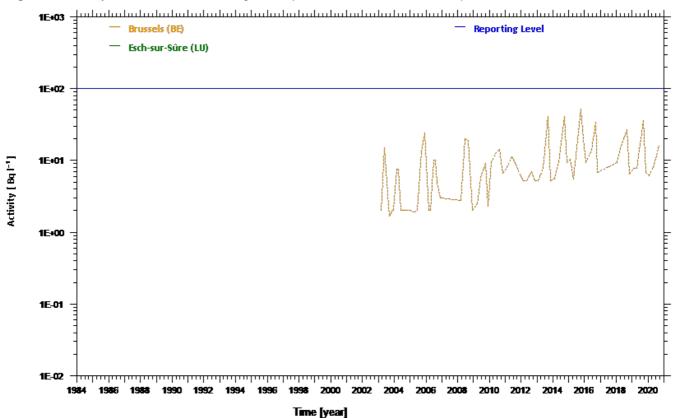
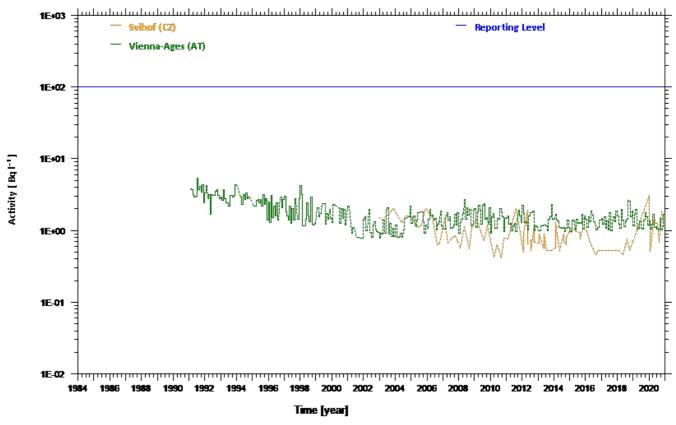



Fig. W30 Activity trends for ³H in drinking water (Langelsheim, Wiesbaden and Berlin)

Fig. W31 Activity trends for ³H in drinking water (Brussels and Esch-sur-Sûre)



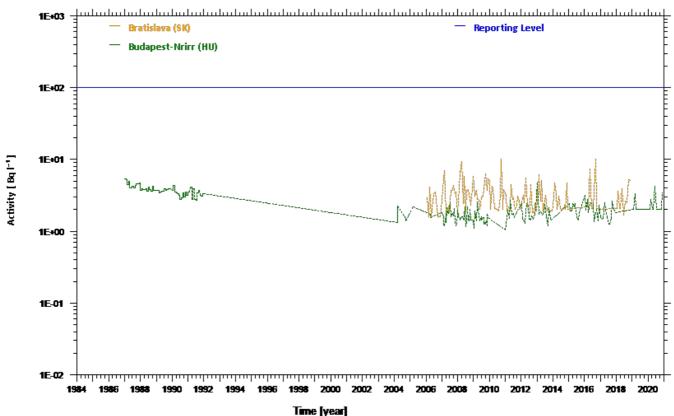

drinking water (Bq I ⁻¹) tritium (³H)

Fig. W32 Activity trends for ³H in drinking water (Svihof and Vienna-Ages)

:

Activity trends		
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

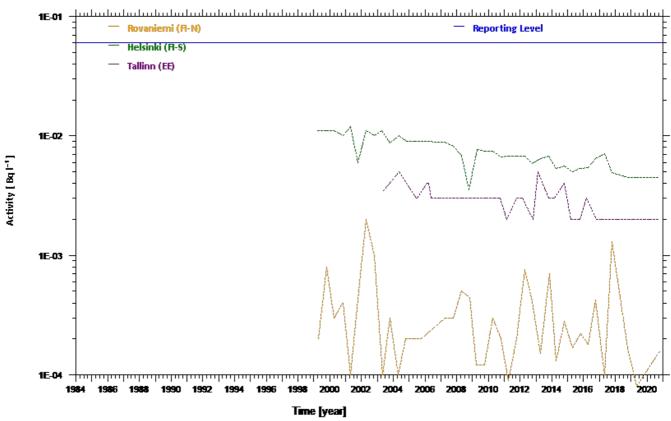
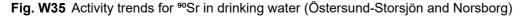
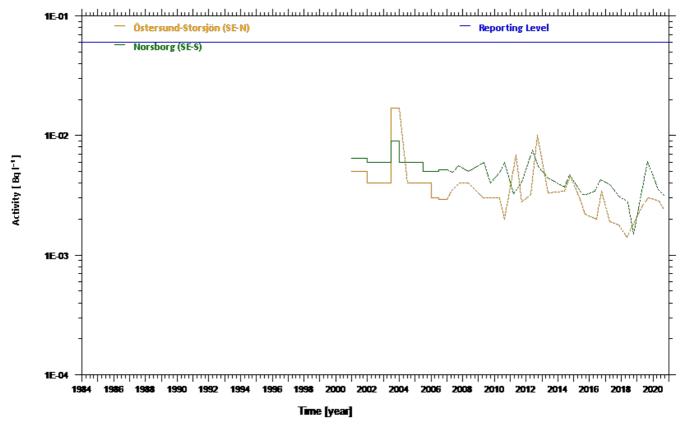
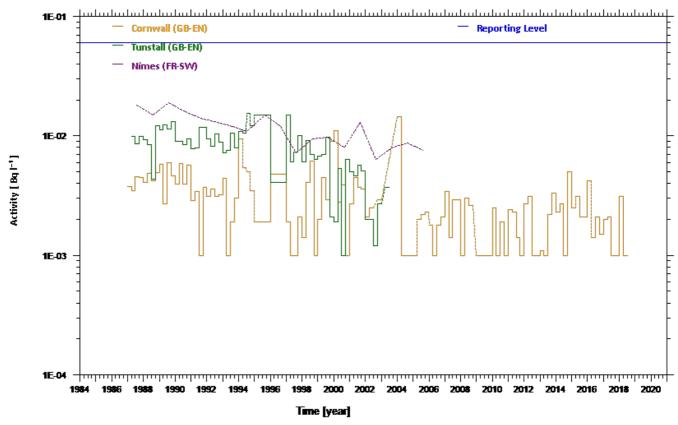
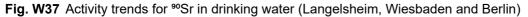



Fig. W34 Activity trends for ⁹⁰Sr in drinking water (Rovaniemi, Helsinki and Tallinn)

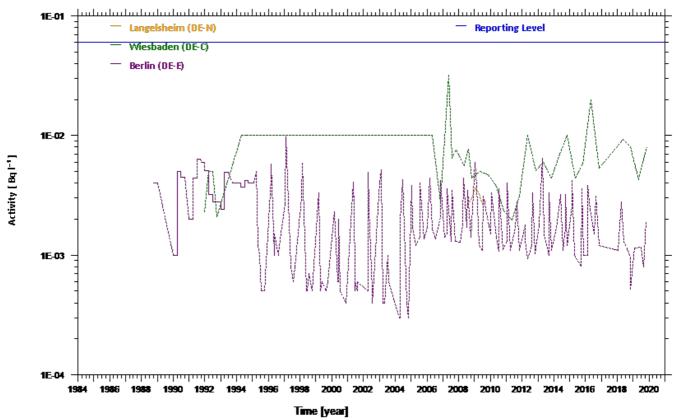
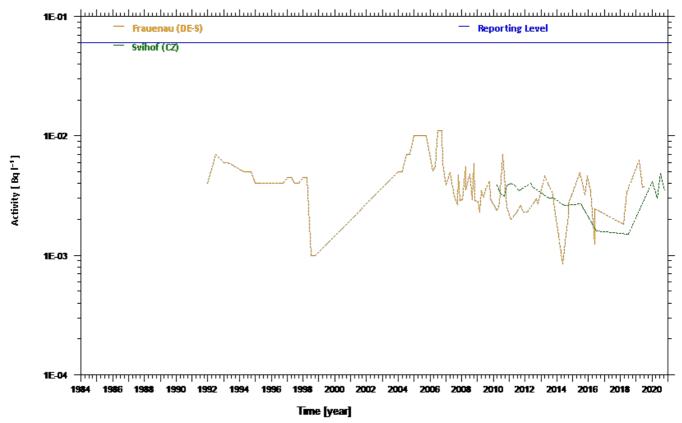
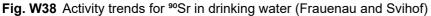
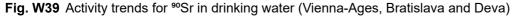


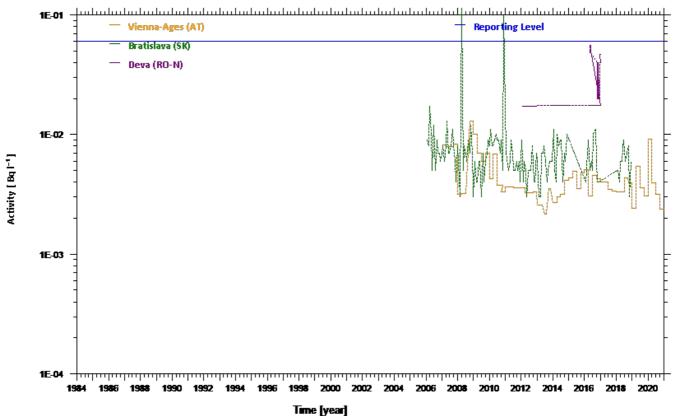
Fig. W36 Activity trends for ⁹⁰Sr in drinking water (Cornwall, Tunstall and Nîmes)

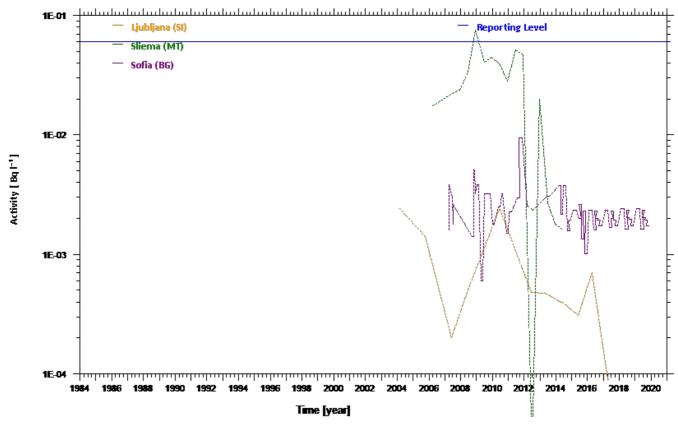
:

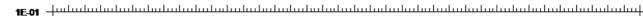


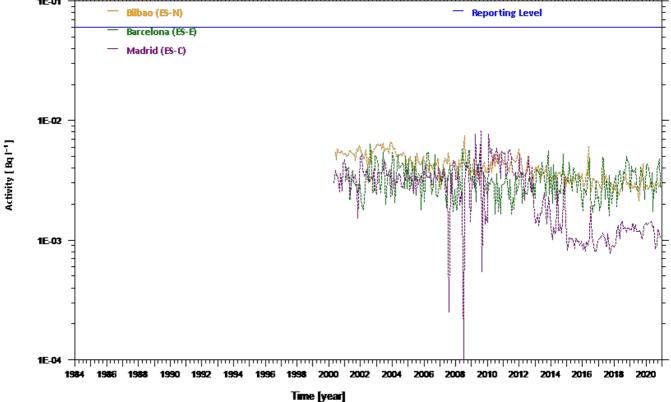












:

Activity trends		
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

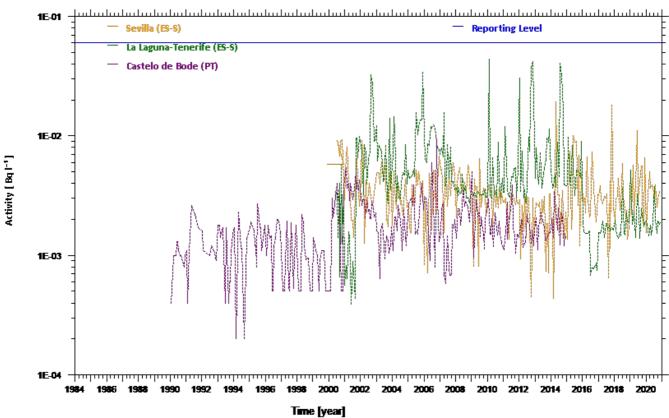
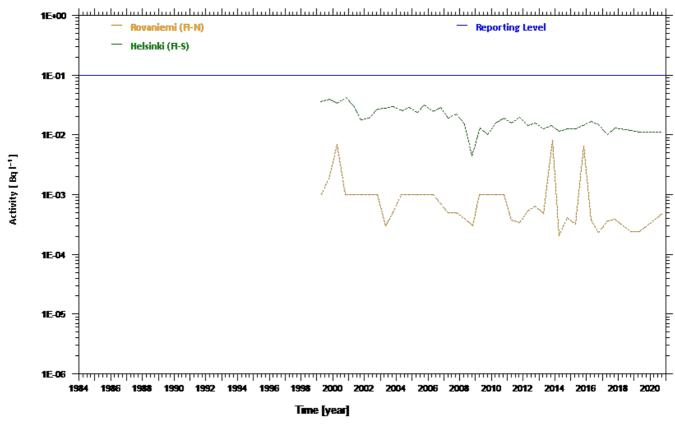
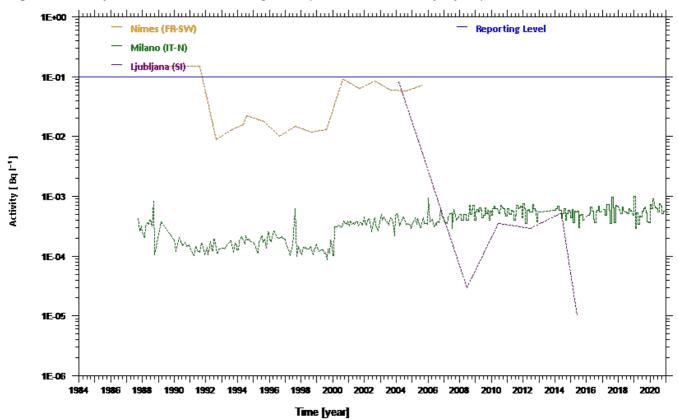
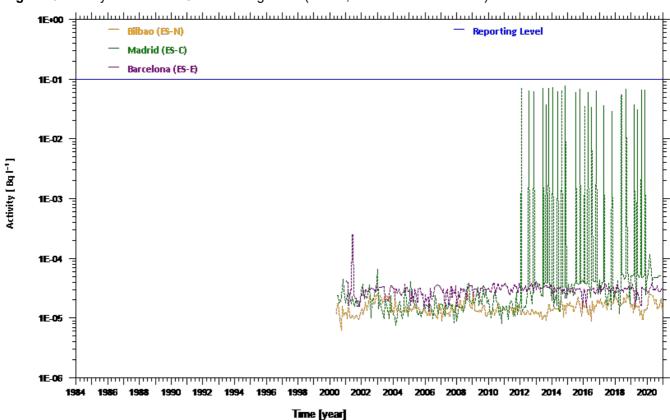


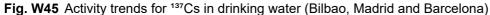
Fig. W42 Activity trends for ⁹⁰Sr in drinking water (Sevilla, La Laguna-Tenerife and Castelo de Bode)

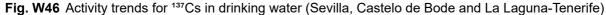
drinking water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

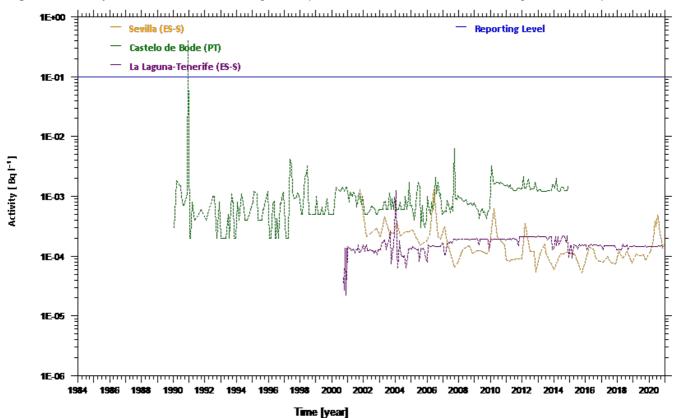
Fig. W43 Activity trends for ¹³⁷Cs in drinking water (Rovaniemi and Helsinki)

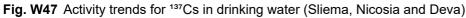
:

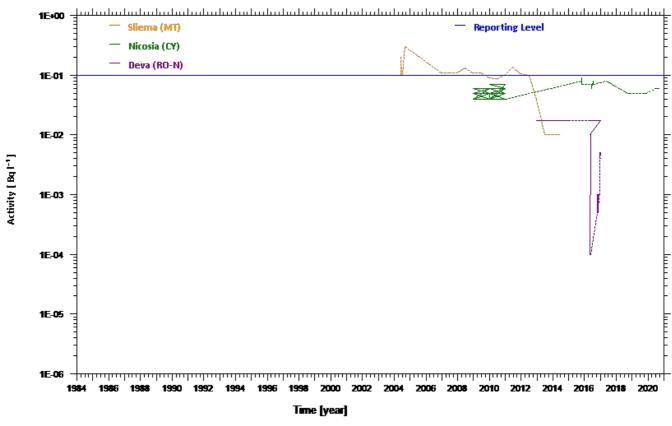




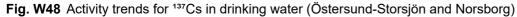

Fig. W44 Activity trends for ¹³⁷Cs in drinking water (Nîmes, Milano and Ljubljana)

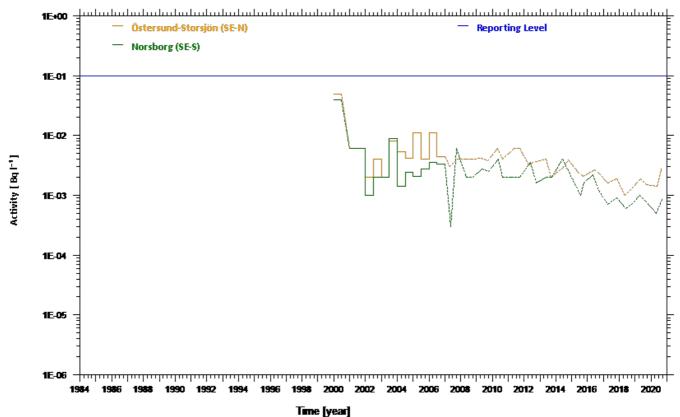



Activity trends		
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)

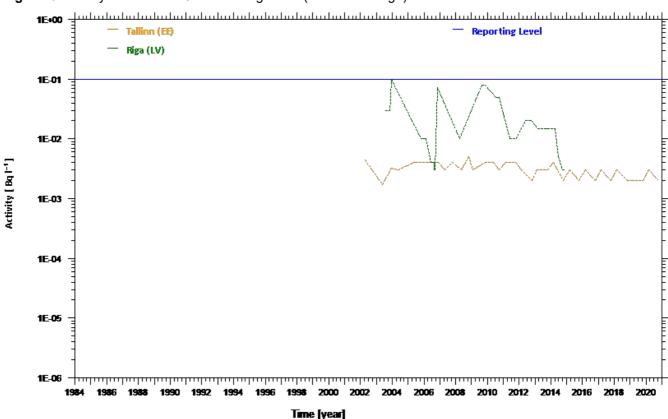


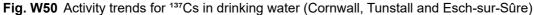


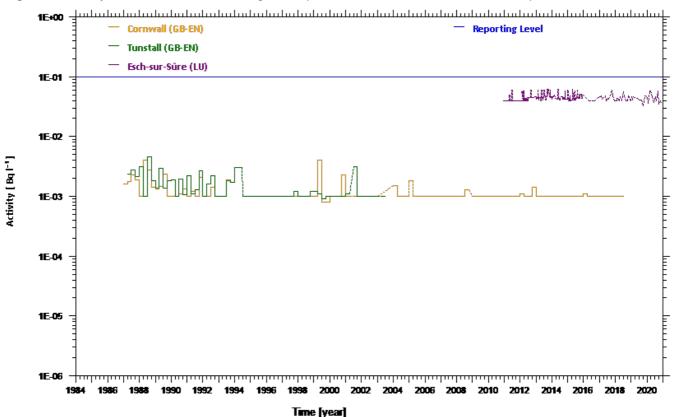


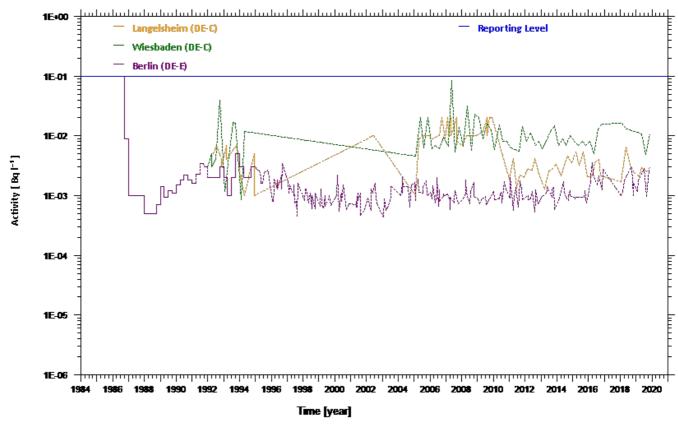


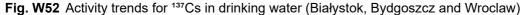
:






Activity trends		
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)





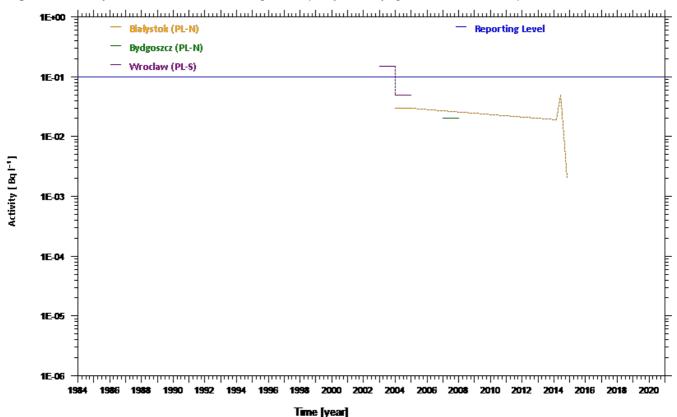

drinking water (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Fig. W51 Activity trends for ¹³⁷Cs in drinking water (Langelsheim, Wiesbaden and Berlin)

:

Activity trends		
SAMPLE TYPE	:	drinking water (Bq I ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)

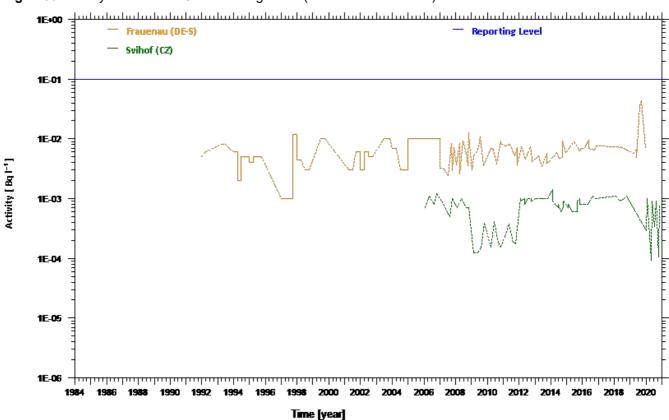
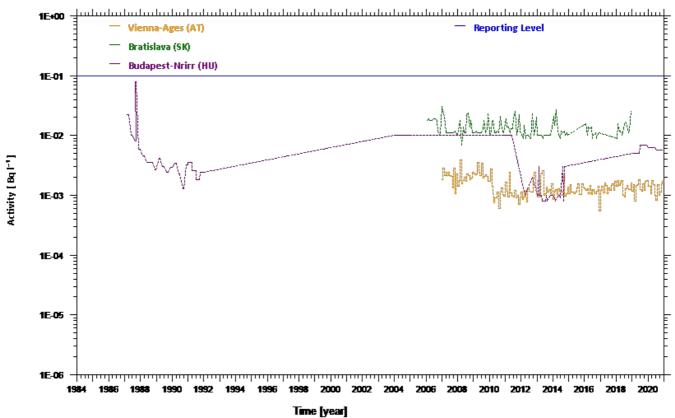
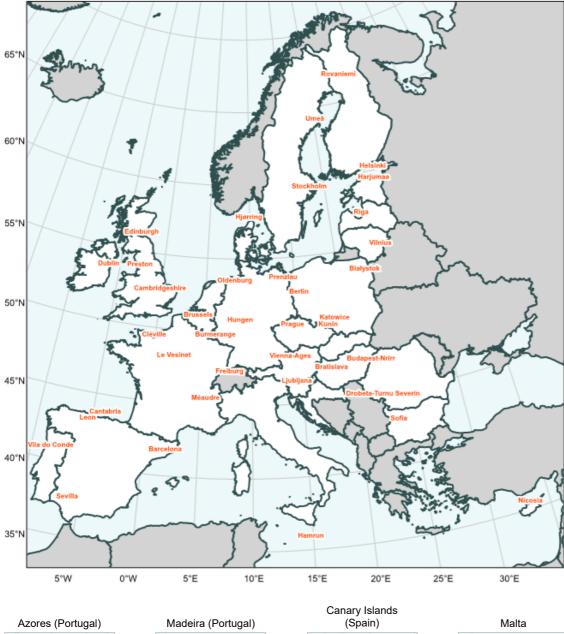
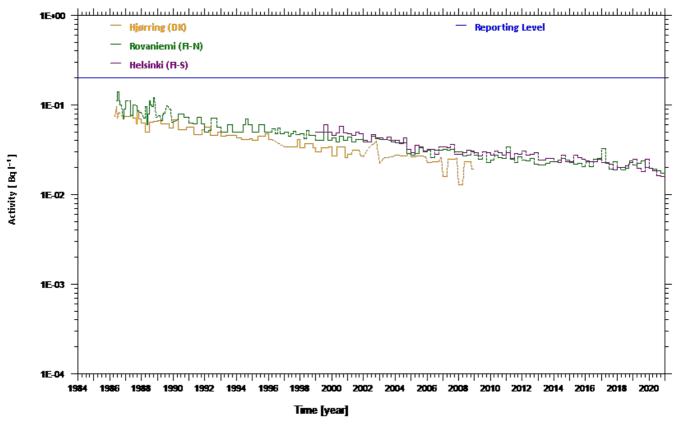




Fig. W53 Activity trends for ¹³⁷Cs in drinking water (Frauenau and Svihof)



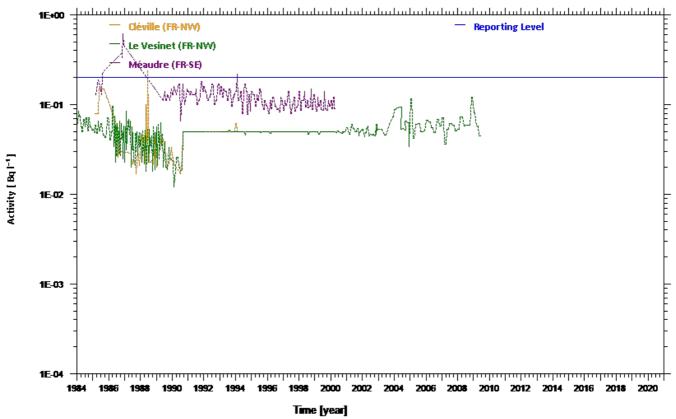


Fig. M14 Activity trends for ⁹⁰Sr in milk (Hjørring, Rovaniemi and Helsinki)

:

Activity trends		
SAMPLE TYPE	:	milk (Bq l ^{–1})
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

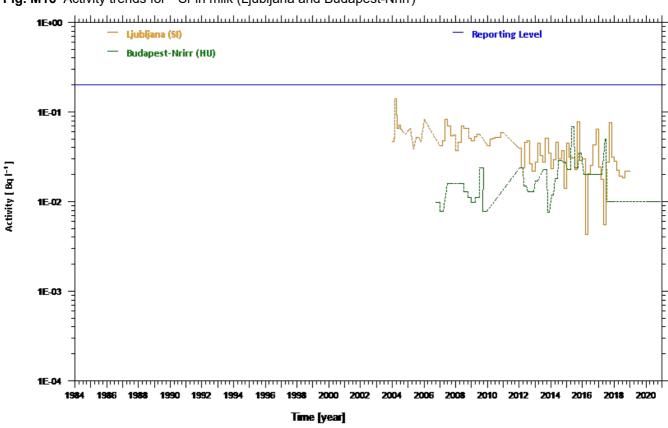
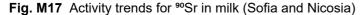
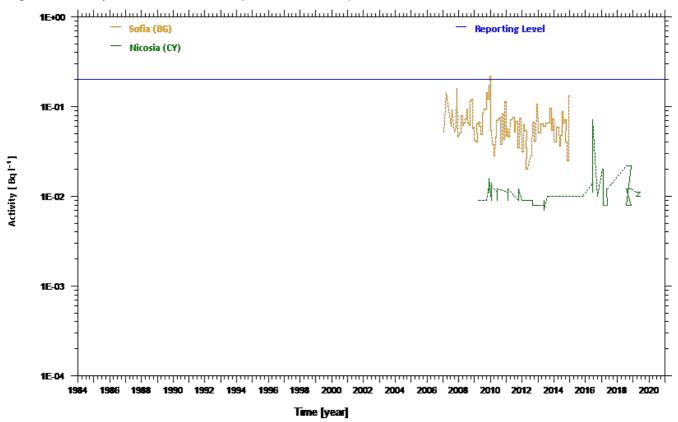
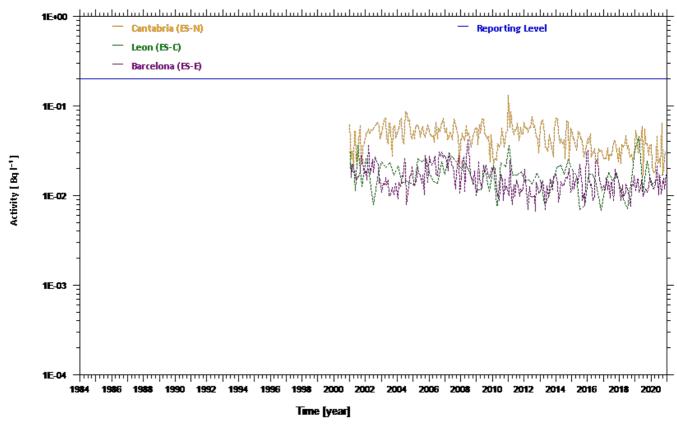
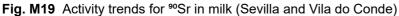




Fig. M16 Activity trends for ⁹⁰Sr in milk (Ljubljana and Budapest-Nrirr)





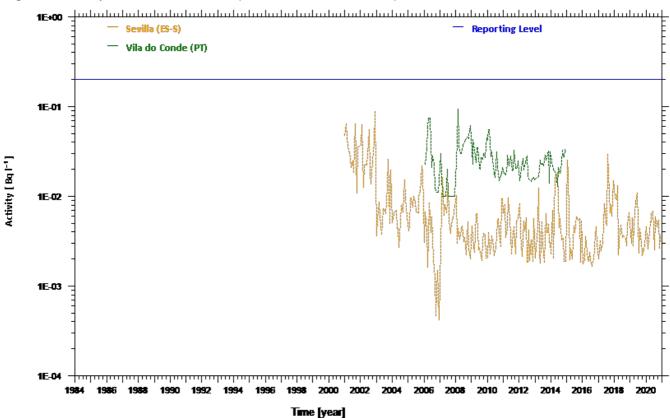

milk (Bq l ⁻¹) strontium-90 (⁹⁰Sr)

Fig. M18 Activity trends for ⁹⁰Sr in milk (Cantabria, Leon and Barcelona)

:

Activity trends		
SAMPLE TYPE	:	milk (Bq l ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

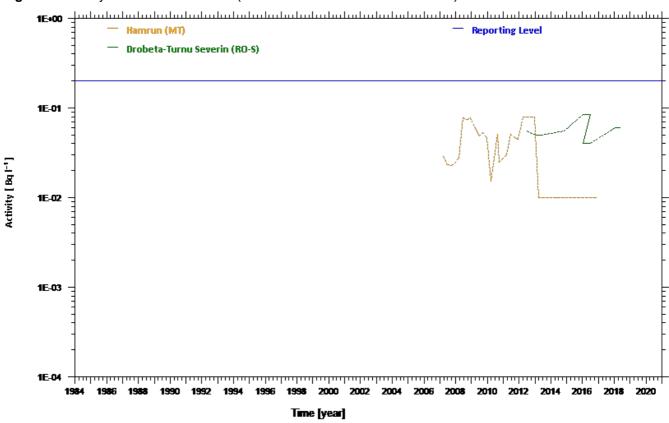
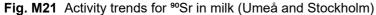
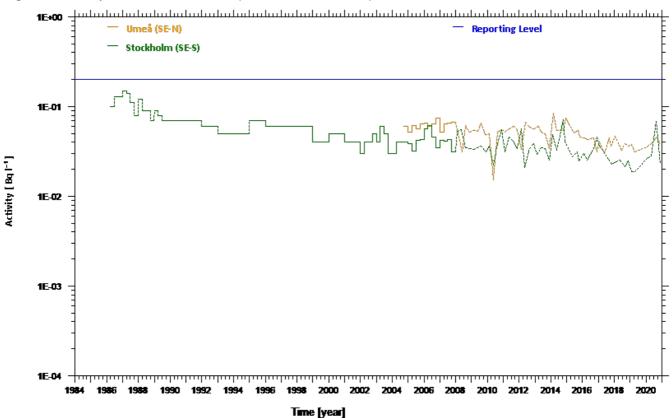
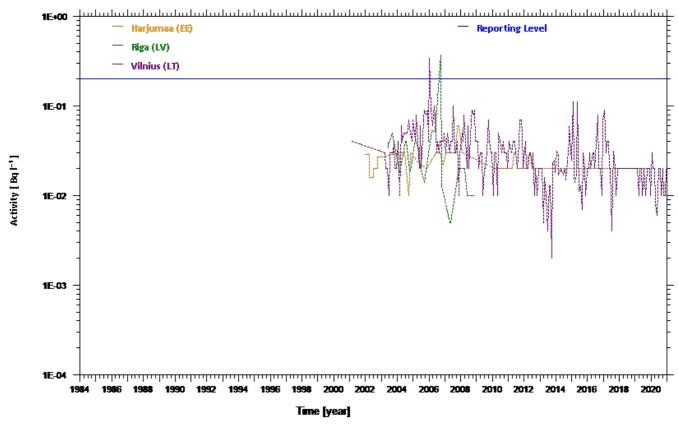




Fig. M20 Activity trends for ⁹⁰Sr in milk (Hamrun and Drobeta-Turnu Severin)



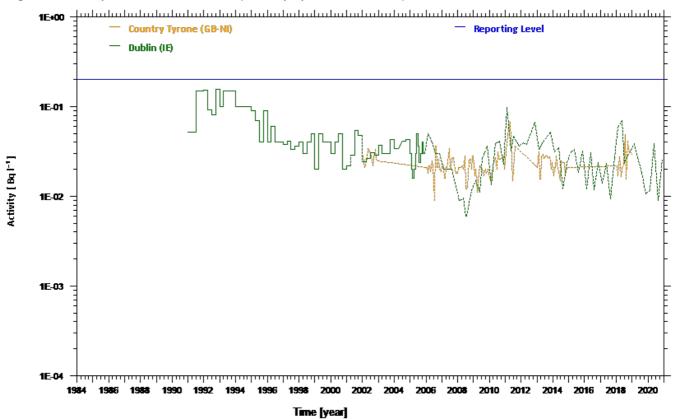

milk (Bq l ⁻¹) strontium-90 (⁹⁰Sr)

Fig. M22 Activity trends for ⁹⁰Sr in milk (Harjumaa, Riga and Vilnius)

:

Activity trends		
SAMPLE TYPE	:	milk (Bq l ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

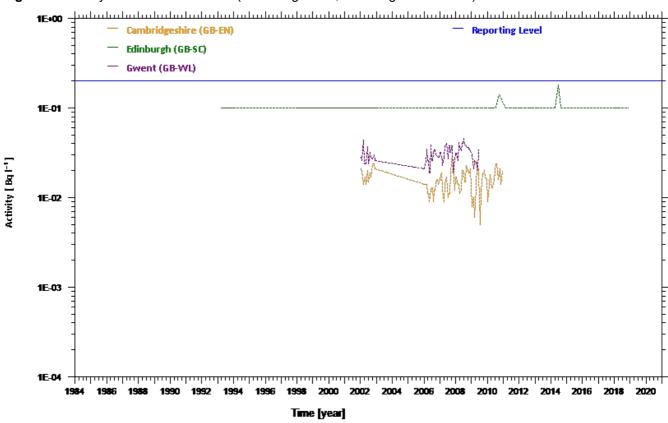
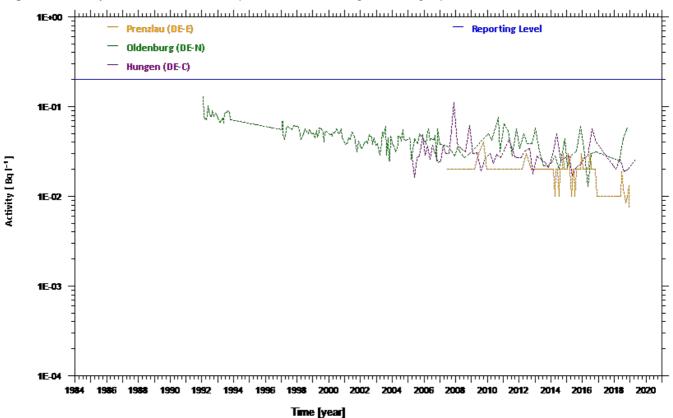
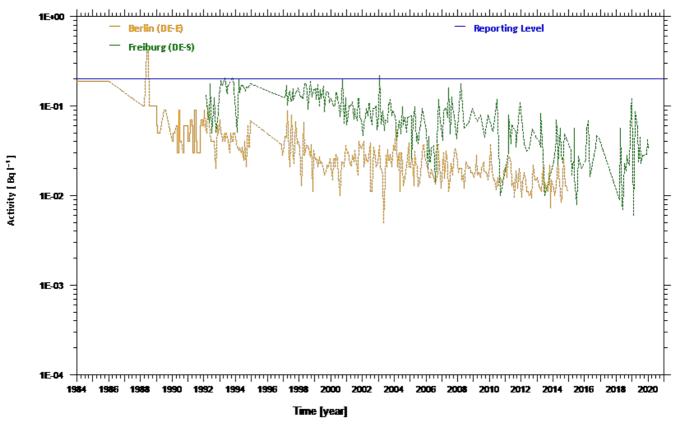
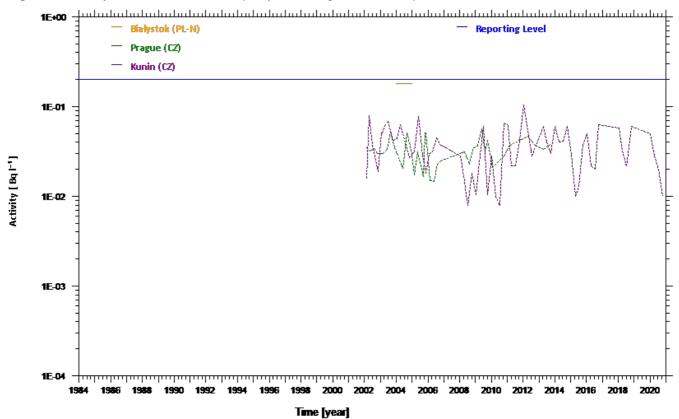
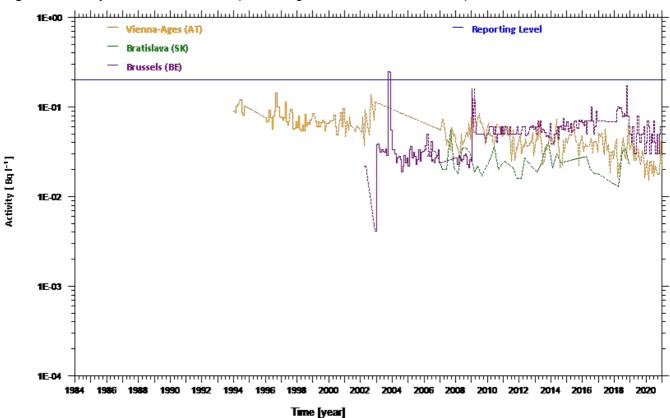



Fig. M24 Activity trends for ⁹⁰Sr in milk (Cambridgeshire, Edinburgh and Gwent)





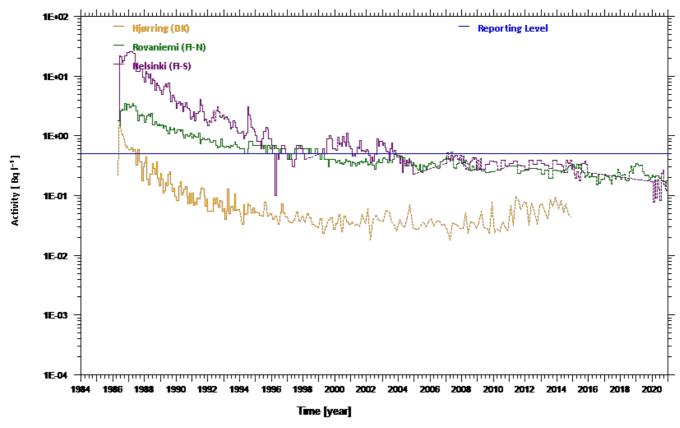
:

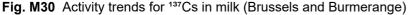


Activity trends SAMPLE TYPE NUCLIDE CATEGORY

milk (Bq l ⁻¹) strontium-90 (⁹⁰Sr)

Fig. M28 Activity trends for ⁹⁰Sr in milk (Vienna-Ages, Bratislava and Brussels)


:



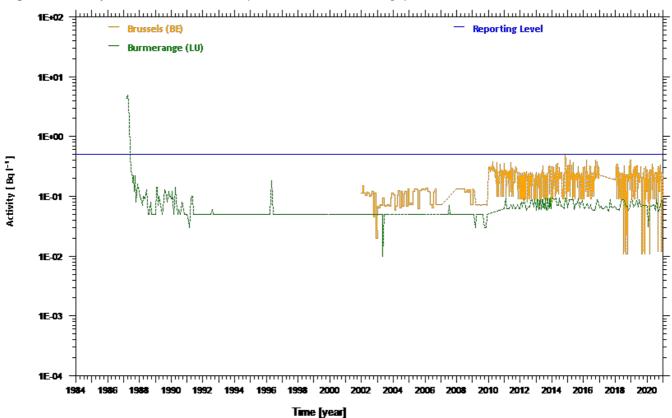
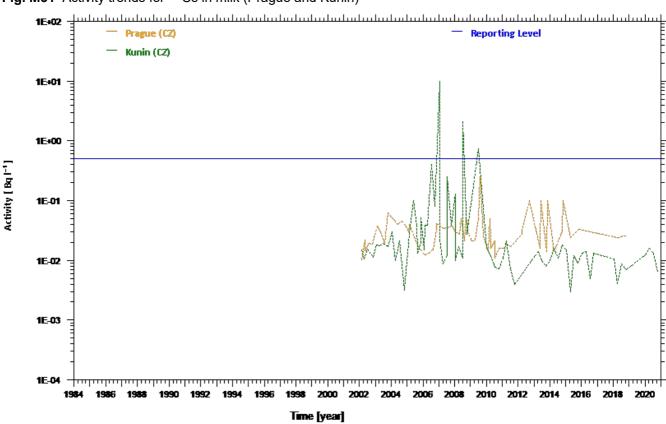
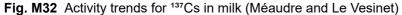

milk (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Fig. M29 Activity trends for ¹³⁷Cs in milk (Hjørring, Rovaniemi and Helsinki)

:





Activity trendsSAMPLE TYPE:milk (Bq | -1)NUCLIDE CATEGORY:caesium-137 (137Cs)

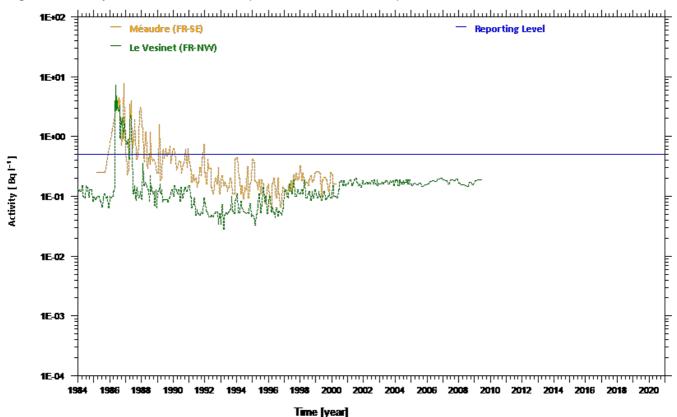
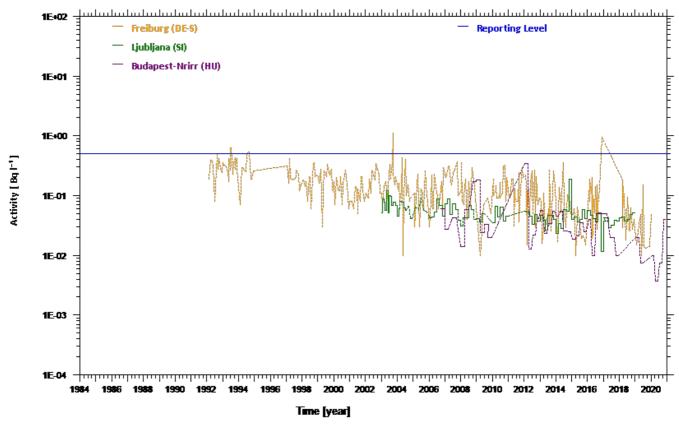



Fig. M31 Activity trends for ¹³⁷Cs in milk (Prague and Kunin)

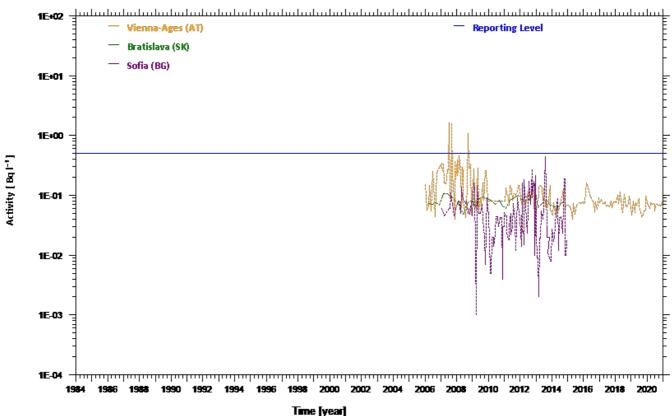
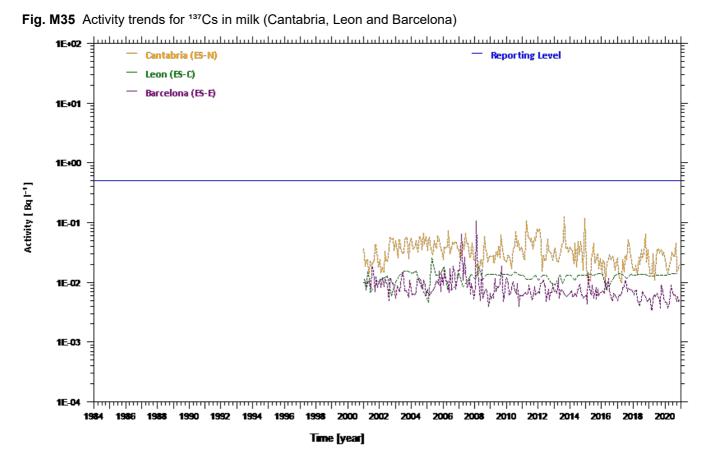
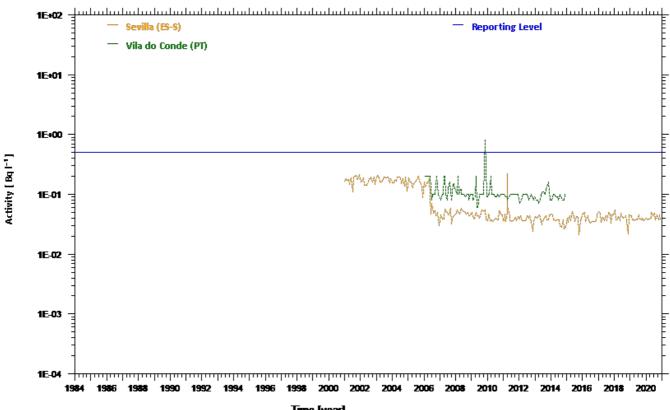
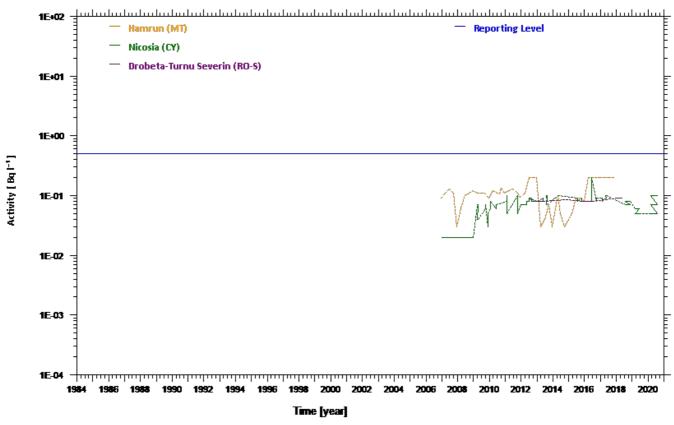


Fig. M33 Activity trends for ¹³⁷Cs in milk (Freiburg, Ljubljana and Budapest-Nrirr)

:



Activity trends		
SAMPLE TYPE	:	milk (Bq l ⁻¹)
NUCLIDE CATEGORY	:	caesium-137 (¹³⁷ Cs)

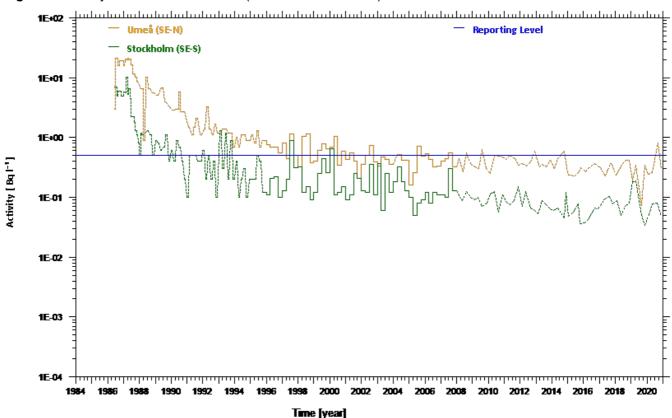


Fig. M37 Activity trends for ¹³⁷Cs in milk (Hamrun, Nicosia and Drobeta-Turnu Severin)

:

Activity trends SAMPLE TYPE NUCLIDE CATEGORY

milk (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

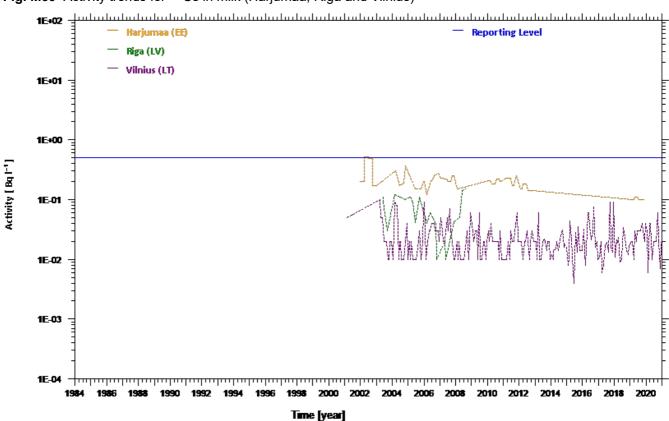
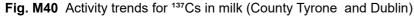
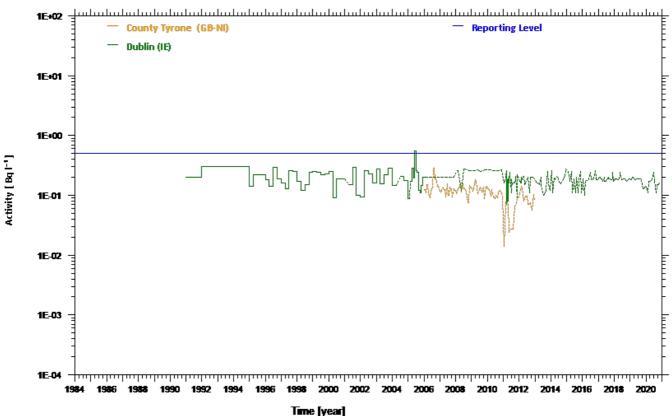
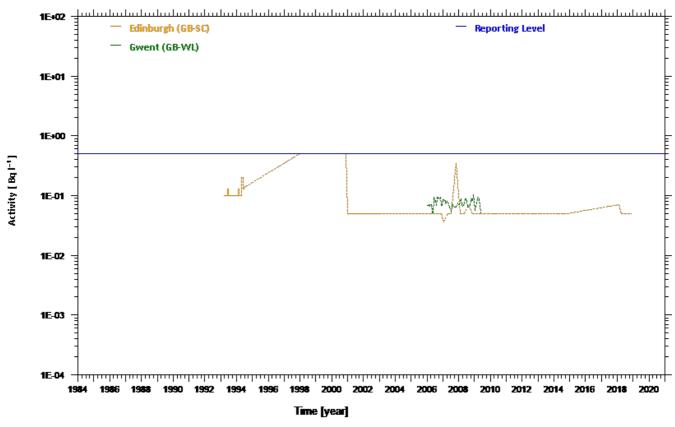




Fig. M39 Activity trends for ¹³⁷Cs in milk (Harjumaa, Riga and Vilnius)

:



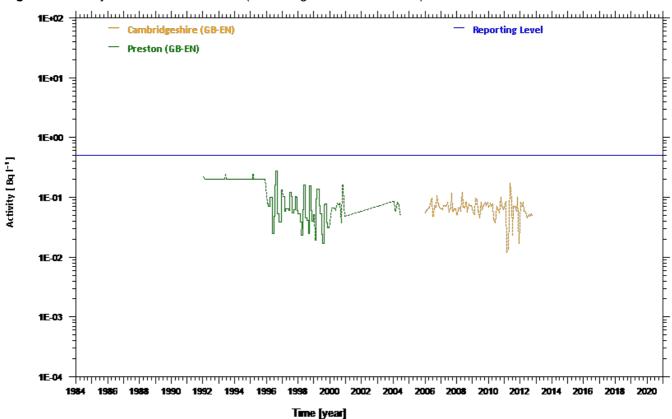
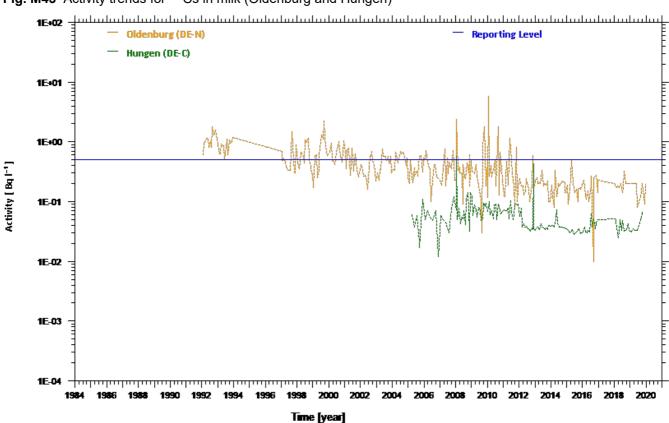
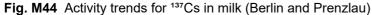

milk (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

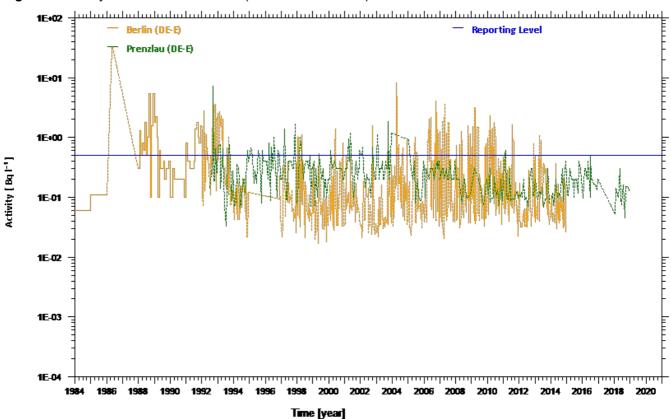
Fig. M41 Activity trends for ¹³⁷Cs in milk (Edinburgh and Gwent)

:

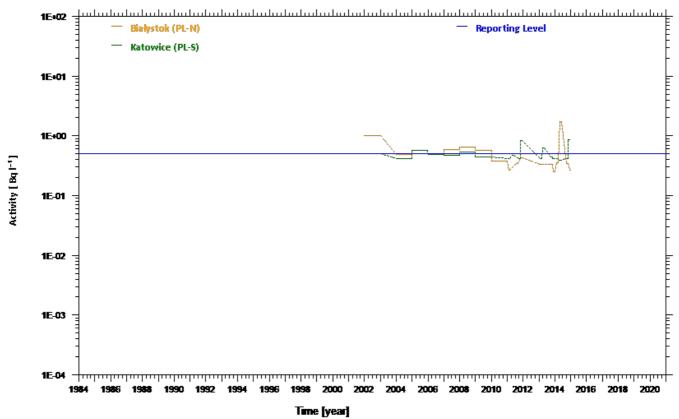


Activity trends SAMPLE TYPE NUCLIDE CATEGORY


milk (Bq l ⁻¹) caesium-137 (¹³⁷Cs)



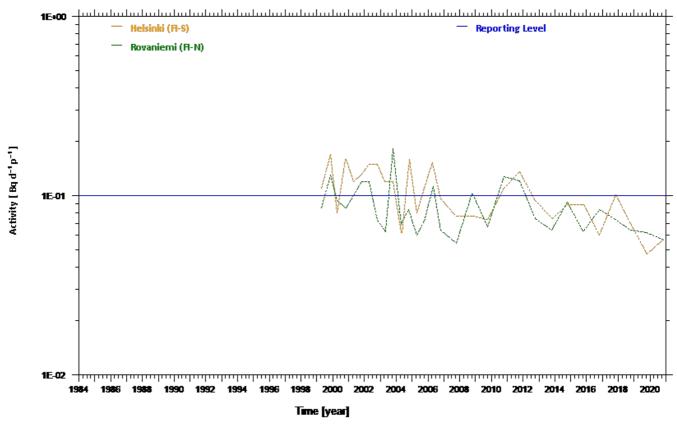
:



milk (Bq l ⁻¹) caesium-137 (¹³⁷Cs)

Fig. M45 Activity trends for ¹³⁷Cs in milk (Białystok and Katowice)

:



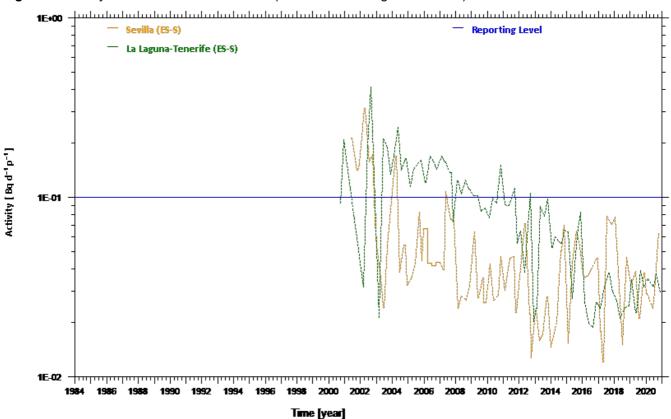

mixed diet (Bq d⁻¹ p⁻¹) strontium-90 (⁹⁰Sr)

Fig. D14 Activity trends for ⁹⁰Sr in mixed diet (Helsinki and Rovaniemi)

:

Activity trends SAMPLE TYPE : NUCLIDE CATEGORY :

mixed diet (Bq d⁻¹ p⁻¹) strontium-90 (⁹⁰Sr)

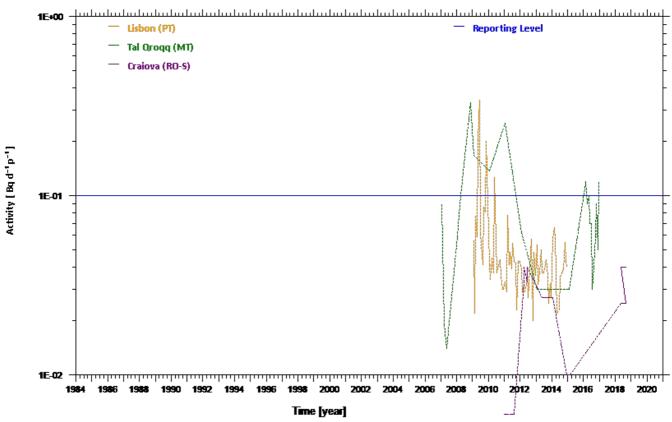
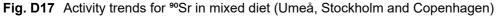
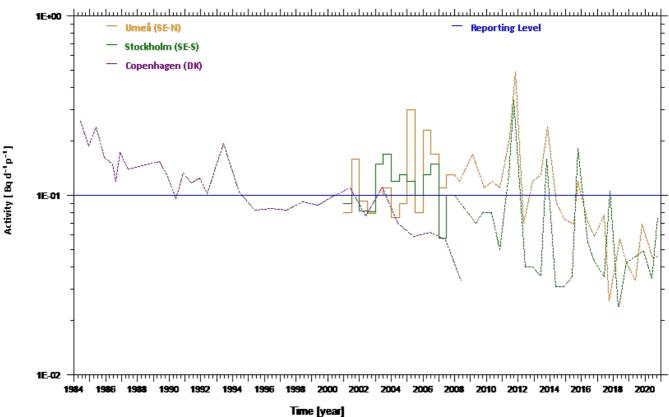
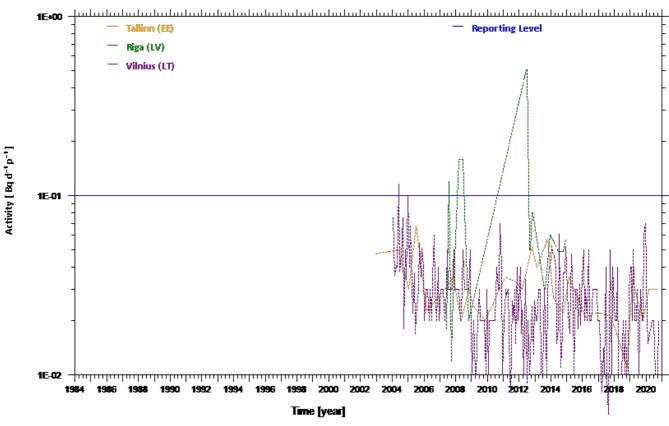
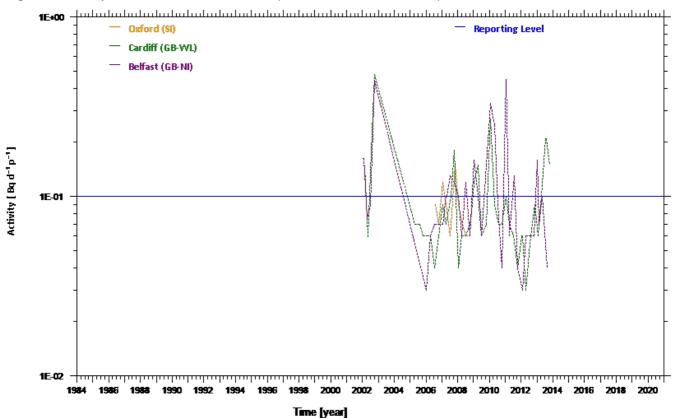
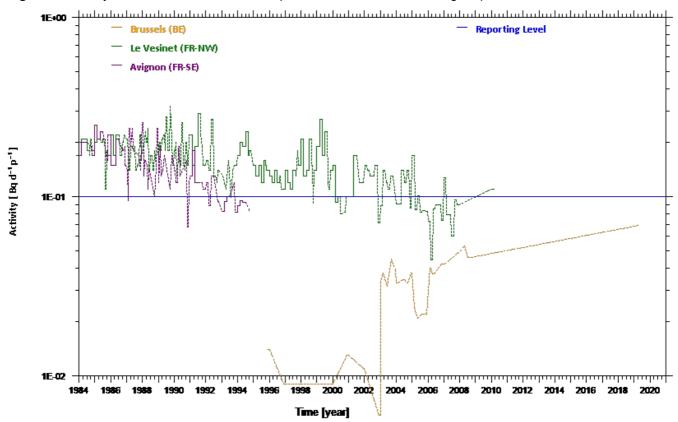




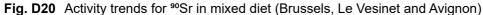
Fig. D16 Activity trends for ⁹⁰Sr in mixed diet (Lisbon, Tal Qroqq and Craiova)




mixed diet (Bq d⁻¹ p⁻¹) strontium-90 (⁹⁰Sr)

:



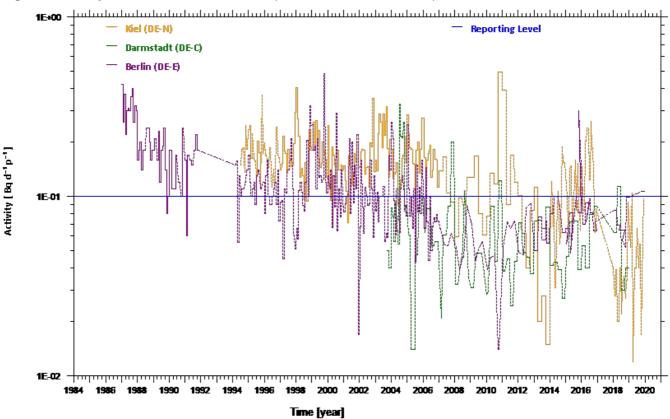
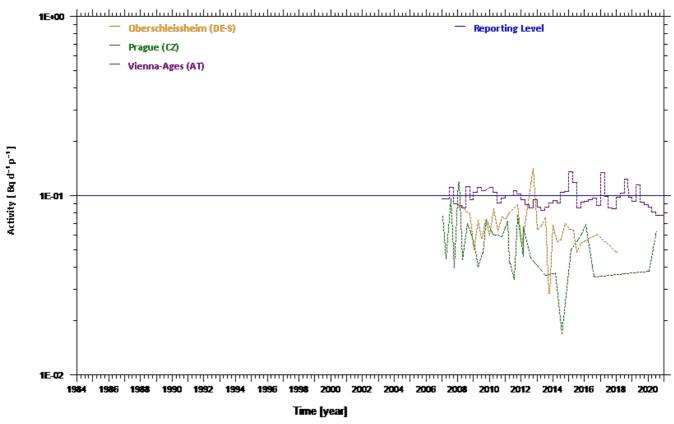
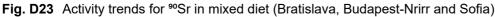


Activity trends SAMPLE TYPE NUCLIDE CATEGORY

mixed diet (Bq d⁻¹ p⁻¹) strontium-90 (⁹⁰Sr)

:

Fig. D21 Activity trends for ⁹⁰Sr in mixed diet (Kiel, Darmstadt and Berlin)

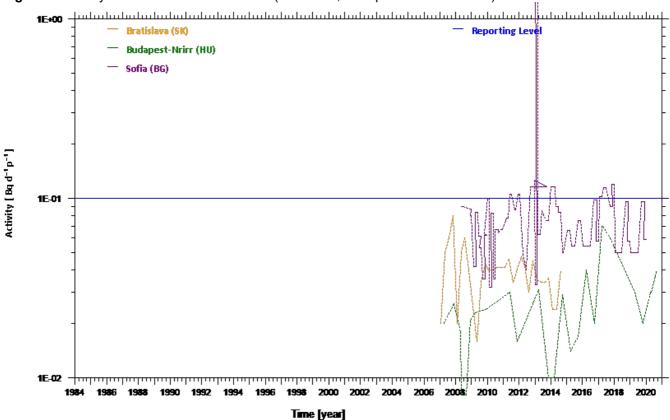
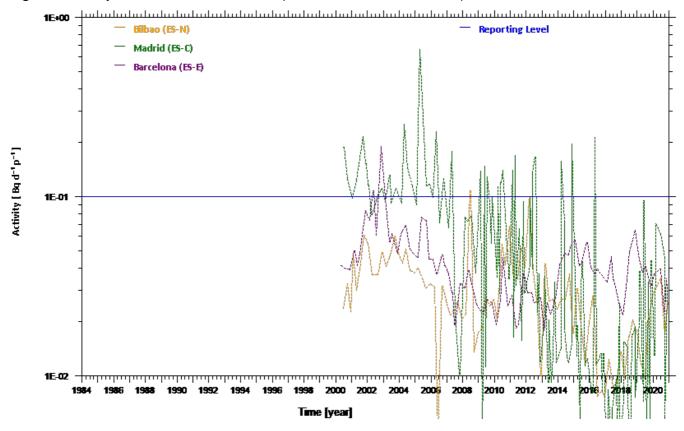


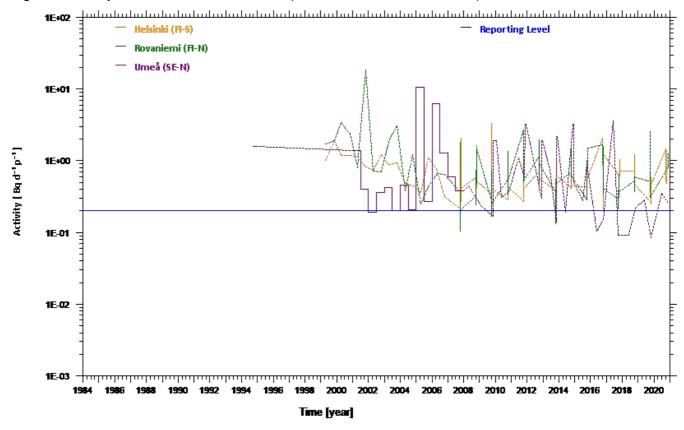
Fig. D22 Activity trends for ⁹⁰Sr in mixed diet (Oberschleissheim, Prague and Vienna-Ages)

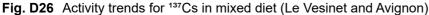
:

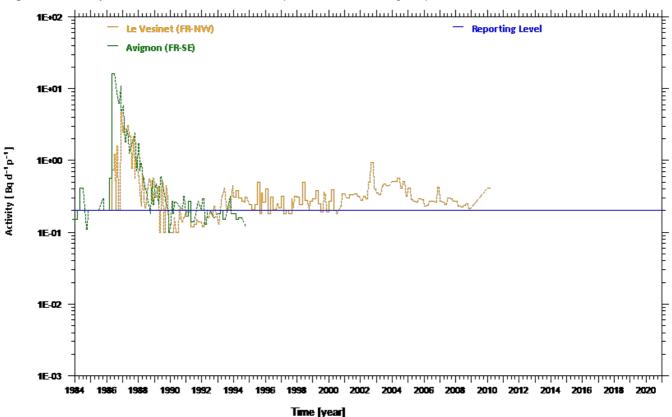


Activity trends		
SAMPLE TYPE	:	mixed diet (Bq d ⁻¹ p ⁻¹)
NUCLIDE CATEGORY	:	strontium-90 (⁹⁰ Sr)

Fig. D24 Activity trends for ⁹⁰Sr in mixed diet (Bilbao, Madrid and Barcelona)

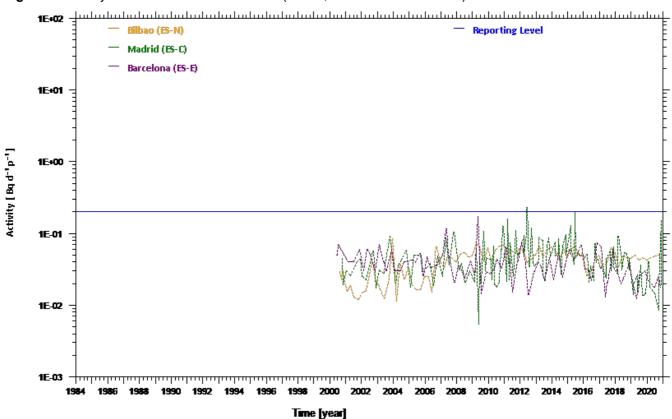


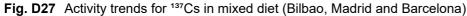

mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)


Fig. D25 Activity trends for ¹³⁷Cs in mixed diet (Helsinki, Rovaniemi and Umeå)

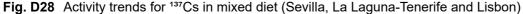
:

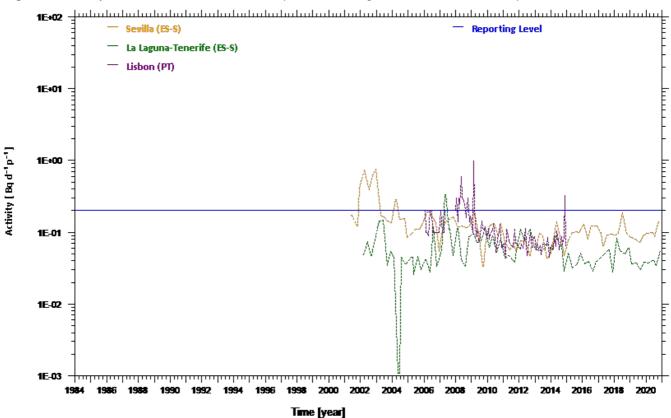
:



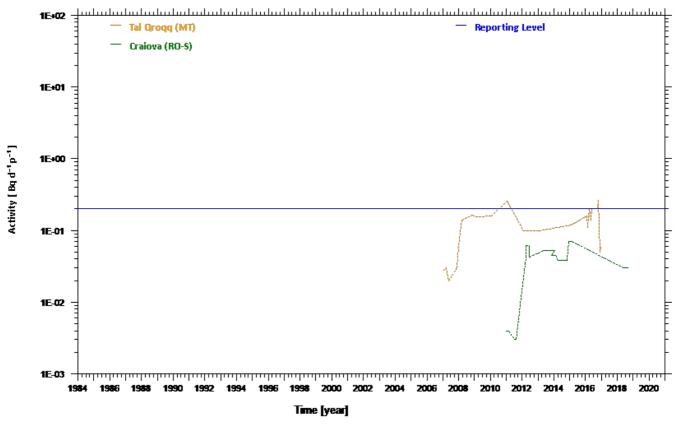

290

Activity trends SAMPLE TYPE NUCLIDE CATEGORY


mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)



:





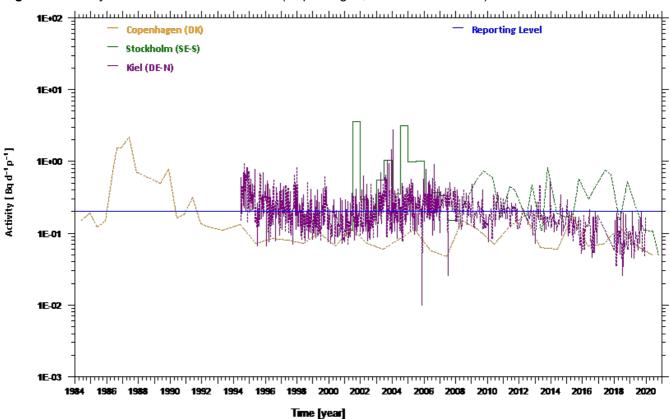

mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)

Fig. D29 Activity trends for ¹³⁷Cs in mixed diet (Tal Qroqq and Craiova)

:

Activity trends SAMPLE TYPE NUCLIDE CATEGORY

mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)

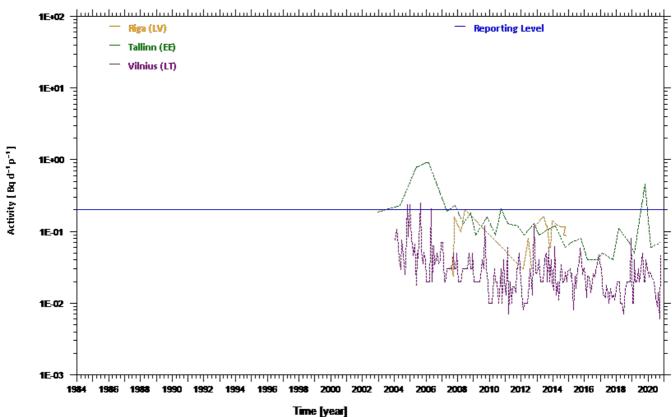
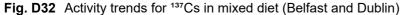
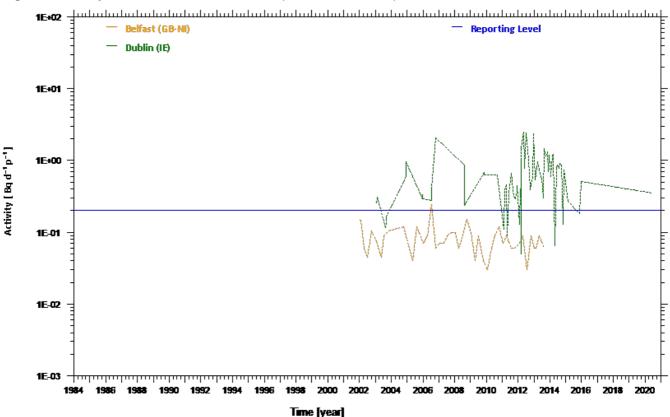
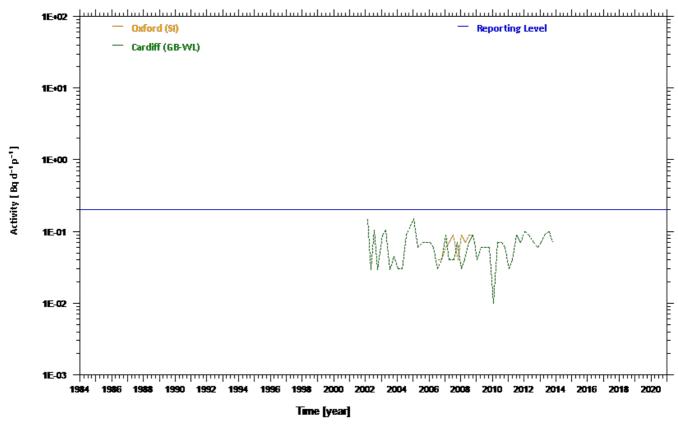
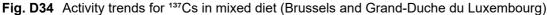




Fig. D31 Activity trends for ¹³⁷Cs in mixed diet (Riga, Tallinn and Vilnius)

:





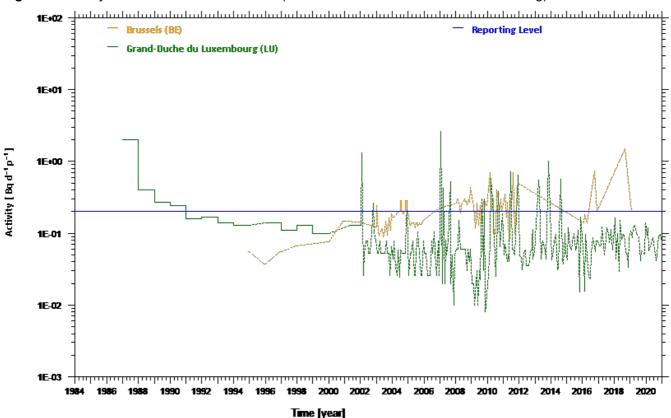
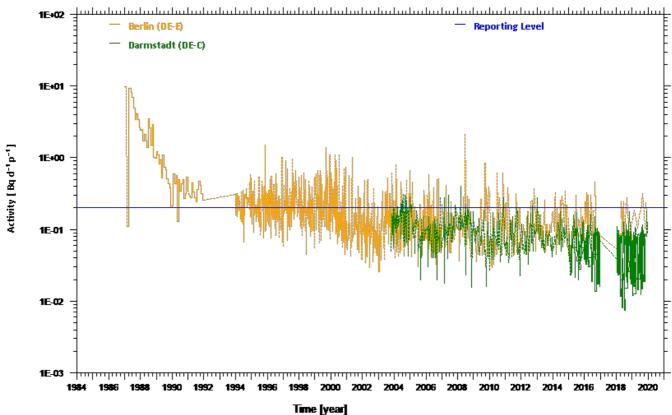
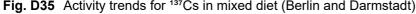

mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs)

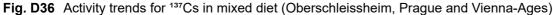
Fig. D33 Activity trends for ¹³⁷Cs in mixed diet (Oxford and Cardiff)

:





Activity trends SAMPLE TYPE NUCLIDE CATEGORY


mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (137Cs)

:

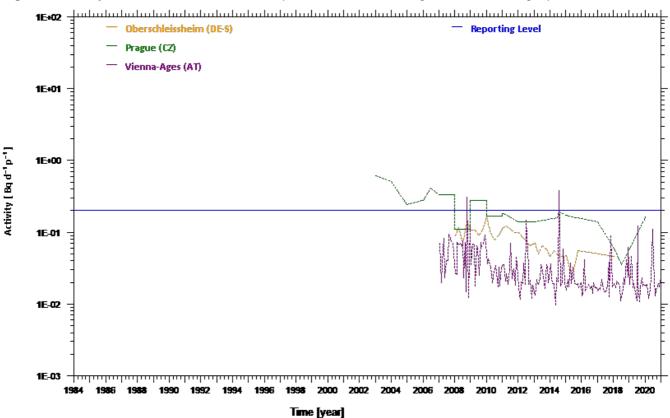
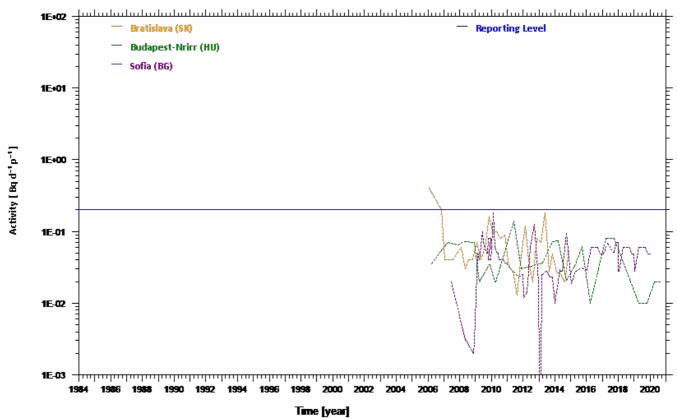



Fig. D37 Activity trends for ¹³⁷Cs in mixed diet (Bratislava, Budapest-Nrirr and Sofia)

:

Appendix A Origins and contents of Articles 35 and 36

The treaty establishing the European Atomic Energy Community (EURATOM) was signed in Rome on 25 March 1957. Title 2 of the Euratom Treaty sets out provisions for the encouragement of progress in the fields of nuclear energy.

Chapter III of Title 2 deals with Health and Safety matters.

Article 35 states: "Each Member State shall establish the facilities necessary to carry out continuous monitoring of the levels of radioactivity in the air, water and soil and to ensure compliance with the basic standards. The Community shall have the right of access to such facilities so that it may verify their operation and efficiency".

Article 36 states: "The appropriate authorities shall periodically communicate information on the checks referred to in Article 35 to the Community so that it is kept informed of the level of radioactivity to which the public is exposed".

The Commission Recommendations to Article 36 of the Euratom Treaty (2000/473/Euratom)

In addition to articles 35 and 36 of the Euratom Treaty, a Commission Recommendation (2000/473/Euratom) has been published (OJ L191 of 27.7.2000) in view of providing more detailed information on which sample types and radionuclide categories EU Member States should report to the Commission. In addition, more practical information is provided on recommended procedures and the time frame in which this data transfer has to be done.

The Commission Recommendation provides supplementary information on the sampling locations and of the recommended sample types and radionuclide categories on which information should be transmitted. This is summarised in the two tables below.

Sample type	Sampling locations	Additional information requested
Airborne particulates	Vicinity of densely populated areas ensuring adequate geographical coverage	
External ambient gamma dose-rate		
Surface water	Major inland waters at places for which flow rate information is available and, if relevant, from coastal waters	Average flow rate during which the sample was taken
Drinking water	Compliant with the drinking water directive (98/83/EC) Major ground or surface water supplies and for water distribution networks	Annual water volume distributed or produced
Milk	Dairies, sufficiently spread to ensure a representative average	Production rate
Mixed diet	Separate ingredients from market places or local distribution centres Complete meals from large consumption centres (canteens, restaurants,)	Composition of mixed diet

Madia	Measurement category		
Media	Dense network	Sparse network	
Airborne particulates	¹³⁷ Cs, gross beta	¹³⁷ Cs, ⁷ Be	
Air	Ambient gamma dose rate	Ambient gamma dose rate	
Surface water	¹³⁷ Cs, residual beta	¹³⁷ Cs	
Drinking water	³ H, ⁹⁰ Sr, ¹³⁷ Cs	³ H, ⁹⁰ Sr, ¹³⁷ Cs	
	Natural radionuclides as monitored in compliance with Council Directive 98/83/EC	Natural radionuclides as monitored in compliance with Council Directive 98/83/EC	
Milk	⁹⁰ Sr, ¹³⁷ Cs	⁹⁰ Sr, ¹³⁷ Cs, ⁴⁰ K	
Mixed diet	⁹⁰ Sr, ¹³⁷ Cs	⁹⁰ Sr, ¹³⁷ Cs, ¹⁴ C	

Appendix B

Method for calculating the reporting levels

Reporting levels were used in the report with the aim to improve transparency when bringing together measurements as significant values and as constraint values. Uniform constraint levels have been defined on the basis of their significance from the health point of view, irrespective of the detection limits applied by the different laboratories. Although the calculation is based on a reference annual dose, it needs to be emphasized that the reporting levels are only meant to be a tool for transparent reporting and should not be confused with maximum permitted levels of radioactive contamination. The reporting level RL is derived as:

$$RL = \frac{DL}{RF.EDC.CF}$$
(1)

where: DL = annual dose limit, taken to be 1 milli-

- sievert [1] RF = reduction factor of the dose limit, taken to 1000
- EDC = effective dose coefficient in Sv/Bq
- CF = annual consumption per person

The basic annual dose limit for the public equals 1 millisievert. This limit, decreased by a factor of thousand, i.e. 1 microsievert, can be regarded as having no radiological significance. Using a nominal probability coefficient of stochastic effects for the whole population of 5.10^{-2} per sievert [1], taking only fatal cancers into consideration, this dose represents a radiological risk of 5.10^{-8} per year.

Reporting levels are introduced only for artificial radionuclides (3 H, 90 Sr and 137 Cs). The actual level for natural radionuclides (7 Be) is indicated in the sparse network graphs. The values for the effective dose coefficient (values for adults were considered), the annual consumption and the rounded values of the reporting levels obtained by applying equation 1 are given in the table below.

Sample type	Radionuclide category	EDC [2] (Sv/Bq)	Annual consumption	Reporting level (rounded values)
Air	gross β (based on ⁹⁰ Sr)	2.4 10 ⁻⁸	8030 m ³ [3]	5.10 ⁻³ Bq m ⁻³
	¹³⁷ Cs	4.6 10 ⁻⁹	8030 m ³ [3]	3.10 ⁻² Bq m ⁻³
Surface water	residual β (based on ⁹⁰ Sr)	2.8 10 ⁻⁸	60 l *	6.10 ⁻¹ Bq l ⁻¹
	¹³⁷ Cs	1.3 10 ⁻⁸	60 l *	1.10 ⁰ Bq l ⁻¹
Drinking water	³ H	1.8 10 ⁻¹¹	600 I [4]	1.10 ⁺² Bq l ⁻¹
	⁹⁰ Sr	2.8 10 ⁻⁸	600 I [4]	6.10 ⁻² Bq l ⁻¹
	¹³⁷ Cs	1.3 10 ⁻⁸	600 I [4]	1.10 ⁻¹ Bq l ⁻¹
Milk	⁹⁰ Sr	2.8 10 ⁻⁸	200 I [4]	2.10 ⁻¹ Bq l ⁻¹
	¹³⁷ Cs	1.3 10 ⁻⁸	200 I [4]	5.10 ⁻¹ Bq l ⁻¹
Mixed diet	⁹⁰ Sr	2.8 10 ⁻⁸	365 d	1.10 ⁻¹ Bq d ⁻¹ p ⁻¹
	¹³⁷ Cs	1.3 10 ⁻⁸	365 d	2.10 ⁻¹ Bq d ⁻¹ p ⁻¹

 $^{\ast}\,$ assumed to 10 % of the annual drinking water consumption

[1] ICRP publication 60 : 1990 Recommendations of the ICRP, Pergamon Press (1991)

[2] Basic Safety Standards (96/29/Euratom, Tables A and B)

[3] ICRP publication 23 : Reference man: Anatomical, Physiological and Metabolic Characteristics, Pergamon Press (1975)

[4] Commission of the European Communities, Post-Chernobyl Action 5, Underlying data for Derived Intervention Levels, EUR 12553 (1990)

Appendix C

Methods for calculating time and geographical averages

Throughout the report average values were calculated as arithmetic averages with the calculating methods described below.

Air [Bq/m³]

The average concentration A over a period T and within a geographical area G is calculated as follows:

$$\overline{A} = \frac{1}{N_l} \sum_{l=1}^{N_l} \left(\frac{\sum_{i=1}^{N_{ml}} a_{i,l} \Delta t_{i,l}}{\sum_{i=1}^{N_{ml}} \Delta t_{i,l}} \right)$$
(1)

where: $a_{i,l}$ = the value of the i^{th} measurement with duration $\Delta t_{i,l}$ at location I within G

 N_{I} = the number of locations within G

 N_{ml} = number of measurements at location I during T

Surface water [Bq/I]

Only time averages for specific locations over a period T are taken. The following formula is used:

$$\overline{S} = \frac{1}{N_m} \sum_{i=1}^{N_m} s_i$$
⁽²⁾

where: s_i = value of the i^{-th} measurement N_m = number of measurements during T

Drinking water and milk [Bq/I]

The average drinking water concentration W, respectively milk concentration M, over a period of time T and within a geographical area G is calculated as follows:

$$\overline{W} = \frac{1}{N_l} \sum_{l=1}^{N_l} \left(\frac{\sum_{i=1}^{N_{ml}} w_{i,\,l} \Delta t_{i,\,l}}{\sum_{i=1}^{N_{ml}} \Delta t_{i,\,l}} \right) \text{ or } \overline{M} = \frac{1}{N_l} \sum_{l=1}^{N_l} \left(\frac{\sum_{i=1}^{N_{ml}} m_{i,\,l} \Delta t_{i,\,l}}{\sum_{i=1}^{N_{ml}} \Delta t_{i,\,l}} \right)$$
(3)

where
$$w_{i,l}$$
 = value of the ith drinking water
measurement performed at location
I within G

- N_{I} = number of locations within G
- N_{ml} = number of measurements at location I during T

Mixed diet [Bq/d.p]

The average mixed diet concentration D over a period of time T and within a geographical area G is calculated as follows:

$$\overline{D} = \frac{1}{N_l} \sum_{l=1}^{N_l} \left(\frac{\sum_{i=1}^{N_{ml}} d_{i,l} \Delta t_{i,l}}{\sum_{i=1}^{N_{ml}} \Delta t_{i,l}} \right)$$
(4)

where: $d_{i,l}$ = the value of the i^{-th} measurement with duration $\Delta t_{i,l}$ at location I within G

 N_{I} = the number of locations within G

 N_{ml} = number of measurements at location I during T

Comments

In this report the basic period T is taken to be one month. Quarterly averages were obtained by averaging the corresponding monthly averages. When the available data do not allow the calculation of quarterly averages, semestrial or annual averages are taken.

In most cases data are taken from national reports where, very often, time or space averages are already given. Hence the quantities a, s, w, m and d are sometimes averages themselves, and the calculated averages A, S, W, M and D may only be an approximation of the true average values.

Since the number of measurements per month or region is not always the same, to avoid untoward biases, quarterly and annual regional averages are taken as the mean of the corresponding monthly and quarterly averages respectively. National averages are obtained in the same way starting from the mean of the corresponding monthly regional averages.

Appendix D

Addresses of national competent authorities and main laboratories

Austria

Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft Abteilung V/7 Strahlenschutz Radetzkystraße 2 A-1031 Wien <u>www.bmifuw.at</u>

Bundesministerium für Gesundheit Abteilung III Strahlenschutz Radetzkystraße 2 A-1031 Wien <u>www. bmg.gv.at</u>

Österreichische Agentur für Gesundheit und Ernährungssicherheit Kompetenzzentrum für Strahlenschutz und Radiochemie Spargelfeldstraße 191 A-1226 Wien <u>www.ages.at</u>

Belgium

Federal Agency for Nuclear Control (FANC) Markies Street 1 bus 6A B - 1000 Brussels Belgium <u>www.fanc.fgov.be</u>

SCK.CEN Boeretang 200 B - 2400 MOL <u>www.sckcen.be</u>

IRE Industrial Zone Avenue de l'Esperance 1 B - 6220 FLEURUS <u>www.ire.eu</u>

Bulgaria

Executive Environment Agency 136, Tsar Boris III blvd <u>1618 Sofia</u>

National Center of Radiobiology and Radiation Protection 3, Georgi Sofiiski Blvd 1606 Sofia <u>http://www.ncrrp.org</u>

Croatia

Ministry of the Interior, Civil Protection Directorate Nehajska 5 HR-10000 Zagreb, CROATIA <u>https://civilna-zastita.gov.hr/</u>

Institute for Medical Research and Occupational Health Ksaverska cesta 2, POB 291 HR-10001 Zagreb, CROATIA <u>https://www.imi.hr/en/</u>

Cyprus

Radiation Inspection and Control Service Department of Labour Inspection 12, Apellis Street 1493 Nicosia <u>www.mlsi.gov.cy/dli</u>

State General Laboratory 44, Kimonos Street 1451 Nicosia www.moh.gov.cy/sgl

Czech Republic

Státní úřad pro jadernou bezpečnost Senovážné nám. 9 CZ-11000 Praha 1 <u>www.sujb.cz</u>

Státní ústav radiační ochrany Bartoškova 28 CZ-14000 Praha 4 <u>www.suro.cz</u>

Denmark

National Institute of Radiation Protection Knapholm 7 DK - 2730 Herlev <u>www.sundhedsstyrelsen.dk</u>

Risø National Laboratory for Sustainable Energy Technical University of Denmark Postbox 49 DK - 4000 Roskilde <u>www.dtu.dk</u>

Technical University of Denmark DTU Environment Radioecology and Tracer Studies Group Climate and Monitoring Frederiksborgvej 399, Building 201 4000 Roskilde <u>www.dtu.dk</u>

Estonia

Environmental Board Roheline 64 80010 Pärnu <u>https://keskkonnaamet.ee/en</u>

Finland

Radiation and Nuclear Safety Authority (STUK) Jokiniemenkuja 1, FI-01370 Vantaa <u>www.stuk.fi</u>

France

Autorité de Sûreté Nucléaire (ASN) 15 Rue Louis Lejeune F - 92120 Montrouge <u>www.asn.fr</u>

Institut de Radioprotection et de Sûreté Nucléaire Pôle santé et environnement Direction de l'environnement 31, rue de l'Ecluse B.P. 40035 F - 78116 Le Vesinet <u>www.irsn.fr</u>

Germany

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz Referat S II 5 Postfach 120 629 D - 53048 Bonn www.bmub.bund.de

Deutscher Wetterdienst - Zentrale Frankfurter Straße 135 D - 63067 Offenbach am Main <u>www.dwd.de</u>

Bundesamt für Strahlenschutz Referat PB 3 Ingolstädter Landstraße 1 D - 85764 Oberschleißheim <u>www.bfs.de</u>

Greece

Greek Atomic Energy Commission PO Box 60092 GR - 15341 Aghia Paraskevi, Attiki <u>http://en.eeae.gr</u>

Environmental Radioactivity Laboratory Institute of Nuclear Technology - Radiation Protection NCSR "Demokritos" GR - 15310 Aghia Paraskevi, Attiki www.ipta.demokritos.gr

Hungary

Ministry of Human Capacities (EMMI) National Public Health Centre -Department of Radiobiology and Radiohygiene (NNK SSF) Anna u. 5. H-1221 Budapest <u>https://www.nnk.gov.hu/index.php/sugarbiologiai-essugar-egeszsegugyi-foosztaly/foosztaly-kezdolapja</u>

Ministry of Human Capacities (EMMI) National Public Health Centre (NNK) Albert Flórián út 2-6 H-1097 Budapest <u>www.nnk.gov.hu</u>

Ministry of Agriculture and Rural Development (FVM) Central Agricultural Office Food and Feed Safety Directorate National Food Investigation Institute, Department of Radiochemistry Fogoly utca 13-15 H-1182 Budapest <u>https://www.nebih.gov.hu/en</u>

Ministry of Agriculture National Food Chain Safety Office, Food Chain Safety Laboratory Directoratw Radiological Reference Laboratory Fogoly utca 13-15 H-1182 Budapest <u>https://www.nebih.gov.hu/en</u>

Ministry of Environment and Water (KvVM): "Dél-dunántúli Környezetvédelmi, Természetvédelmi és Vízügyi Felügyelőség" (DDKTVF) Papnövelde u. 13 H-7621 Pécs <u>www.ddkvf.hu</u>

Baranya County Government Office, Department of Public Health, Laboratory Section Szabadság út 7. H-7623 Pécs <u>https://www.kormanyhivatal.hu/hu/baranya/</u>

Hungarian Atomic Energy Authority Fényes Adolf utca 4 H-1036 Budapest <u>www.oah.hu</u>

Nuclear Power Plant Paks H-7031 Paks, P.O.B.: 71 <u>http://www.atomeromu.hu/hu/Lapok/default.aspx</u>

Ireland

Environment Protection Agency Johnstown Castle Estate Wexford, Y35 W821 Ireland <u>www.epa.ie</u>

Italy

ISIN - National Inspectorate for Nuclear Safety and Radiation Protection Via Capitan Bavastro 116 I - 00154 Roma <u>https://www.isinucleare.it</u>

ISPRA - Institute for Environmental Protection and Research Via Vitaliano Brancati 48 I - 00144 Roma-EUR http://www.isprambiente.gov.it

Latvia

Latvian Environment, Geology and Meteorology Agency Maskavas 165, Riga, LV-1019 <u>www.lvgma.gov.lv</u>

Food and Veterinary Service Peldu 30 Riga, LV-1050 <u>www.pvd.gov.lv</u>

National Diagnostic Centre Lejupes 3 Riga, LV-1076 <u>www.ndc.gov.lv</u>

Lithuania

Environmental Protection Agency Environment Research Department Radiology Division Juozapaviciaus 9 LT- 09311, Vilnius <u>www.gamta.lt</u>

Radiation Protection Center Department of Expertise and Exposure Monitoring Division of Public Exposure Monitoring Kalvariju153 LT-08352, Vilnius <u>www.rsc.lt</u>

National Food and Veterinary Risk Assessment Institute (former National Food and Veterinary Laboratory) Radiology section J.Kairiukscio 10 LT-08409 Vilnius <u>www.nmvrvi.lt</u>

Luxembourg

Direction de la Santé - Division de la Radioprotection Villa Louvigny Allée Marconi L-2120 Luxembourg Luxembourg www.radioprotection.lu

new address from July 2022: 6b, rue Nicolas-Ernest Barblé, L-1210 Luxembourg Luxembourg <u>www.radioprotection.lu</u>

Malta

Radiation Protection Commission Unit F22 Mosta Technopark Mosta MST 3000 <u>www.gov.mt</u>

the Netherlands

Autoriteit Nucleaire Veiligheid en Stralingsbescherming (ANVS) Koningskade 4 2596 AA Den Haag Netherlands <u>https://www.autoriteitnvs.nl/</u>

National Institute for Health and the Environment (RIVM) - Centrum Veiligheid Postbus 1 NL - 3720 BA Bilthoven <u>www.rivm.nl</u>

Rijkswaterstaat Centrale Informatievoorziening (RWS CIV) Afdeling Laboratorium Postbus 2232 3500 GE UTRECHT Netherlands <u>https://www.rijkswaterstaat.nl/water/waterdata-enwaterberichtgeving/waterdata</u>

Wageningen Food Safety Research (WFSR) Akkermaalsbos 2 6708 WB Wageningen Netherlands <u>https://www.wur.nl/</u>

Poland

Central Laboratory for Radiological Protection 7, Konwaliowa Str. 03-194 Warsaw <u>www.clor.waw.pl</u>

National Atomic Energy Agency 36, Krucza Str. 00-522 Warsaw <u>www.paa.gov.pl</u>

National Atomic Energy Agency 17, Bonifraterska 00-220 Warsaw <u>www.paa.gov.pl</u>

Portugal

Instituto Tecnológico e Nuclear (ITN) Unidade de Protecção e Segurança Radiológica (UPSR) Estrada Nacional 10, Apartado 21 P - 2686 Sacavém <u>www.itn.pt</u>

Instituto Superior Técnico Campus Tecnológico e Nuclear Laboratório de Proteção e Segurança Radiológica Estrada Nacional 10 (km 139.7) 2695-066 Bobadela LRS <u>www.itn.pt</u>

Romania

Ministry of Environmental, Water and Forest, National Environmental Protection Agency, National Reference Radioactivity Laboratory 294 Splaiul Independentei, Sector 6, Bucharest, Romania <u>www.anpm.ro</u>

Ministry of Health, National Institute of Public Health 5Th District 1-3 Dr. Leonte Anastasievici Street Romania <u>https://insp.gov.ro</u>

Slovak Republic

Public Health Authority of the Slovak republic Trnavska 52, P.O.BOX 45 826 45 Bratislava <u>www.uvzsr.sk</u>

Regional Public Health Authority based in Košice Ipeľská 1 040 11 Košice <u>www.ruvzke.sk</u> Regional Public Health Authority based in Banská Bystrica Cesta k nemocnici 1 975 56 Banská Bystrica <u>www.vzbb.sk</u>

Slovenia

Uprava Republike Slovenije za jedrsko varnost (Slovenian Nuclear Safety Administration) Litostrojska cesta 54 SI-1000 Ljubljana <u>www.ursjv.gov.si</u>

Uprava Republike Slovenije za varstvo pred sevanji (Slovenian Radiation Protection Administration) Ajdovščina 4 SI-1000 Ljubljana <u>www.uvps.gov.si</u>

Institut Jožef Stefan (Jožef Stefan Institute) Jamova cesta 39 SI-1000 Ljubljana <u>www.ijs.si</u>

Zavod za varstvo pri delu (Institute of Occupational Safety) Pot k izviru 6 SI-1260 Ljubljana-Polje <u>www.zvd.si</u>

Spain

Consejo de Seguridad Nuclear Pedro Justo Dorado Dellmans, 11 E - 28040 Madrid <u>www.csn.es/kprgisweb2/</u>

Ministerio de Fomento Centro de Estudios y Experimentación de Obras Públicas (CEDEX) Alfonso XII, 3 E - 28014 Madrid <u>www.cedex.es</u>

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) Avenida Complutense, 22 E- 28040 Madrid <u>www.ciemat.es</u>

Sweden

Swedish Defense Research Agency S-164 90 Stockholm <u>www.foi.se</u>

Swedish Radiation Safety Authority S-171 16 Stockholm <u>www.ssm.se</u>

United Kingdom

Department for Environment, Food and Rural Affairs (Defra) 2C Ergon House, 17 Smith Square, London SW1P 3JR <u>www.defra.gov.uk</u>

Food Standards Agency Aviation House 125, Kingsway London WC2B 6NH <u>www.food.gov.uk</u>

Food Standards Agency Floors 6 and 7, Clive House 70 Petty France London SW1H 9EX <u>www.food.gov.uk</u>

Scottish Environment Protection Agency (SEPA) Strathallan House The Castle Business Park Stirling FK9 4TZ <u>www.sepa.org.uk</u>

Northern Ireland Environment Agency Industrial Pollution and Radiochemical Inspectorate Klondyke Building Cromac Avenue Lower Ormeau Road Belfast BT7 2JA <u>www.daera-ni.gov.uk/northern-ireland-environment-agency</u>

Northern Ireland Environment Agency Industrial Pollution and Radiochemical Inspectorate Klondyke Building Cromac Avenue Lower Ormaeu Road Belfast BT7 2JA <u>www.ni-environment.gov.uk</u>

The Veterinary Laboratories Agency New Haw Addlestone Surrey KT15 3NB <u>www.defra.gov.uk/vla</u>

The Veterinary Laboratories Agency New Haw Addlestone Surrey KT15 3NB <u>www.defra.gov.uk/vla</u>

Health Protection Agency (HPA) Centre for Radiation, Chemical and Environmental Hazards Radiation Protection Division Chilton Didcot Oxon OX11 0RQ <u>www.hpa.org.uk</u>

Public Health England (PHE) Centre for Radiation, Chemical and Environmental Hazards Radiation Protection Division Chilton Didcot Oxon OX11 0RQ www.hpa.org.uk

UKHSA Centre for Radiation, Chemical and Environmental Hazards Radiation Protection Division Chilton Didcot Oxon OX11 0RQ <u>www.gov.uk/government/organisations/uk-healthsecurity-agency</u>

UK Health Protection Agency (UKHSA) Centre for Radiation, Chemical and Environmental Hazards Scotland 155 Hardgate Road Glasgow G51 4LS <u>www.gov.uk/government/organisations/uk-healthsecurity-agency</u>

The Centre for Environment, Fisheries and Aquaculture Science (CEFAS) Lowestoft Laboratory Pakefield Road Lowestoft Suffolk NR33 0HT <u>www.Cefas.co.uk</u>

The Centre for Environment, Fisheries and Aquaculture Science (CEFAS) Lowestoft Laboratory Pakefield Road Lowestoft Suffolk NR33 0HT <u>www.Cefas.co.uk</u>

AMEC Winfrith Dorset DT2 8DH <u>www.amec.com</u>

LGC Queens Rd Teddington Middlesex TW11 0LY www.lgc.co.uk

LGC Queens Rd Teddington Middlesex TW11 0LY

www.lgc.co.uk

Environment Agency Head Office – Horizon House Deanery Road Bristol BS1 5AH <u>www.gov.uk/government/organisations/environment-agency</u>

SOCOTEC UK Ltd Environmental Science Unit 12, Moorbrook, Southmead Industrial Park Didcot, Oxfordshire OX11 7HP, United Kingdom <u>www.socotec.co.uk</u>

Appendix E

Bibliography - data sources (for 2015-2020)

Austria

Chr. Katzlberger and M. Korner, AGES, CC Strahlenschutz und Radiochemie, Vienna (personal communications)

Belgium

Jurgen CLAES and Sylvain NOOTENS Federal Agency for Nuclear Control (FANC) Unit Surveillance of the Territory and Natural Radiation (personal communication)

Bulgaria

S.Stoyanova (Executive Environment Agency) - Ministry of Environment and Waters, Sofia; R. Totzeva, National Center of Radiobiology and Radiation Protection, Public Exposure Monitoring Laboratory, Sofia (personal communications)

Croatia

Z. Tečić and A. Getaldić. Ministry of the Interior, Civil Protection Directorate, Radiological and Nuclear Safety Sector, Zagreb (personal communications)

Z. Tečić, S. Šoštarić and A. Getaldić. Ministry of the Interior, Civil Protection Directorate, Radiological and Nuclear Safety Sector, Zagreb (personal communications)

Cyprus

Radiation Inspection and Control Service, Department of Labour Inspection, Ministry of Labour and Social Insurance, Environmental Radioactivity Measurements in Cyprus 2004 - 2009, Lefkosia (Nicosia), 2010 (ISBN 978-9963-38-791-1)

A. Sisou and M. Tzortzis, Radiation Inspection and Control Service, Nicosia (personal communications)

Czech Republic

V. Starostová, Státní úřad pro jadernou bezpečnost, Prague ; I. Češpírová and M. Hýža, Státní ústav radiační ochrany (personal communications)

Denmark

K. G. Andersson and S. P. Nielsen, Risø National Laboratory for Sustainable Energy (personal communications)

Estonia

A. Polt, Environmental Board, Climate and Radiation Department (personal communications)

A. Polt, Environmental Board, Radiation Safety Department (personal communications)

Finland

E. Kostiainen and K. Vesterbacka, Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Helsinki (personal communications)

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2007, STUK-B 91/ELOKUU 2008

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2008, STUK-B 103/ELOKUU 2009

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2009, STUK-B 117/ELOKUU 2010

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2010, STUK-B 132/ELOKUU 2011

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2011, STUK-B 148/ELOKUU 2012

Raimo Mustonen – Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2012, STUK-B 159/ 2013

Pia Vesterbacka – Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2013, STUK-B 174/ 2014

Pia Vesterbacka – Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2014, STUK-B 190/ 2015

Pia Vesterbacka – Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2015, STUK-B 204/2016

Pia Vesterbacka – Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2016, STUK-B 215/ 2017

Pia Vesterbacka – Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2017, STUK-B 226/ 2018

Aleksi Mattila and Samu Inkinen – Radiation and Nuclear Safety Authority, STUK, Environmental Radiation Monitoring in Finland: Annual report 2018, STUK-B 236/ 2019

Aleksi Mattila and Samu Inkinen – Radiation and Nuclear Safety Authority, STUK, Environmental Radiation Monitoring in Finland: Annual report 2019, STUK-B 249/ 2020 Aleksi Mattila and Samu Inkinen – Radiation and Nuclear Safety Authority, STUK, Environmental Radiation Monitoring in Finland: Annual report 2020, STUK-B 268/ 2021

France

V. Bruno, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Le Vesinet; (personal communications)

F. Leprieur and G. Manificat, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Le Vesinet; (personal communications)

Institut de Radioprotection et de Sûreté Nucléaire, Bilan de l'état radiologique de l'environnement français en 2007

Institut de Radioprotection et de Sûreté Nucléaire, Bilan de l'état radiologique de l'environnement français en 2008 : Synthese des résultats des réseaux de surveillance de l'IRSN, Rapport DEI nº 2009-04

Institut de Radioprotection et de Sûreté Nucléaire, Bilan de l'état radiologique de l'environnement français en 2009 : Synthese des résultats des réseaux de surveillance de l'IRSN

Institut de Radioprotection et de Sûreté Nucléaire, Report on the Radiological State of the Environment in France in 2010-2011

IRSN, Bilan de l'état radiologique de l'environnement français en 2010-2011

IRSN, Bilan de l'état radiologique de l'environnement français en 2012

IRSN, Bilan de l'état radiologique de l'environnement français de juin 2011 à décembre 2014

IRSN, Bilan de l'état radiologique de l'environnement français de 2015 à 2017

IRSN, Bilan de l'état radiologique de l'environnement français de 2018 à 2020

Germany

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2007, December 2008

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2008, December 2009

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2009, December 2010 Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2010, July 2012

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2011, July 2013

A. Trugenberger-Schnabel and J. Peter, Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit, Neuherberg; R. Stapel, Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (personal communications)

Greece

A. Maltezos - Greek Atomic Energy Commission, Athens (personal communications)

Hungary

Á. Vincze, Hungarian Atomic Energy Authority, Budapest;P. Herczeg and G. Szabo, Ministry of Health, OSSKI, Budapest (personal communications)

OKK-OSSKI, HAKSER 2007 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2007, November 2008

OKK-OSSKI, HAKSER 2008 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2008, December 2009

OKK-OSSKI, HAKSER 2009 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2009, December 2010

OKK-OSSKI, HAKSER 2010 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2010, December 2011

OKK-OSSKI, HAKSER 2011 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2008, December 2012

OSSKI, HAKSER 2012 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks, 2012 – February April 2014

OSSKI, HAKSER 2013 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks, 2013 – April 2015

OSSKI, HAKSER 2014 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks, 2014 – March 2016 OAH, OKSER 2012 - Annual review of the National Radiation Monitoring System (OKSER), 2012 – December, 2013

OAH, OKSER 2013 - Annual review of the National Radiation Monitoring System (OKSER), 2013 – December, 2011

OAH, OKSER 2014 - Annual review of the National Radiation Monitoring System (OKSER), 2014 – May, 2016

OAH, OKSER 2015 - Annual review of the National Radiation Monitoring System (OKSER), 2015 – Septemberr, 2016

OAH, OKSER 2016 - Annual review of the National Radiation Monitoring System (OKSER), 2016 – July, 201

OAH, OKSER 2017 - Annual review of the National Radiation Monitoring System (OKSER), 2016 – December, 2018

Ireland

L. Currivan and K. Kelleher - Environment Protection Agency (former Radiation Protection Institute of Ireland), Wexford (personal communications)

L. Currivan and K. Kelleher – Environmental Protection Agency (former Radiation Protection Institute of Ireland), Wexford (personal communications)

L. Currivan, K. Kelleher and A. Kinahan – Environmental Protection Agency, Wexford (personal communications)

Italy

S. Fontani, V.Innocenzi and G. Menna - ISPRA -ISIN -National Inspectorate for Nuclear Safety and Radiation Protection (personal communications)

Latvia

A. Abramenkovs - Latvian Environment, Geology and Meteorology Centre; D. Šatrovska, Department of Environmental Protection; I.Krēvica, National Diagnostic Centre, (personal communications)

Lithuania

B. Vilimaite Silobritiene - Environmental Protection Agency, Vilnius; R. Ladygiene and A. Orientene, Radiation Protection Centre, Vilnius; P. Drulia - National Food and Veterinary Risk Assessment Institute (former National Food and Veterinary Laboratory) (personal communications)

Luxembourg

Direction de la Santé, Division de la Radioprotection, Luxembourg - Rapports mensuels des résultats de la surveillance de la radioactivité (2007-2020)

Malta

P. Brejza and J. Cremona, Radiation Protection Board (personal communications)

the Netherlands

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands - results in 2007, Report 610791002/2008

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands - results in 2008, Report 610791003/2010

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands - results in 2009, Report 610891002/2011

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands - results in 2010, Report 610891003/2012

National Institute for Health and the Environment (RIVM), Monitoring of radioactivity in the Netherlands. Air dust and deposition – results 2019. RIVM letter report 2021-0077

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands - results in 2011, Report 610891004/2013

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands - results in 2018, RIVM report 2019-0216

National Institute for Health and the Environment (RIVM), Monitoring of radioactivity in the Netherlands. National Radioactivity Monitoring Network – results 2019. RIVM letter report 2021-0079

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands – results in 2012, Report 610891005/2014

National Institute for Health and the Environment (RIVM), Monitoring of radioactivity in the Netherlands. Milk, Food and Feed – results 2019. RIVM letter report 2021-0080

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands – results in 2013, Report 2015-004

National Institute for Health and the Environment (RIVM), Monitoring of radioactivity in the Netherlands. Surface water and seawater – results 2019. RIVM letter report 2021-0081 National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands – results in 2014, Report 2016-0182

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands – results in 2015, Report 2016-0183

https://www.rivm.nl/straling-en-radioactiviteit/industrie-enmonitoring/milieu-en-voedselmonitoring

P. Kwakman, National Institute for Health and the Environment (RIVM), Bilthoven (personal communications)

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands – results in 2016, Report 2018-0160

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands – results in 2017, Report 2019-0103

Poland

K. Dabrowski, A. Kowalczyk, A. Rybaczyk and M. Szalek, National Atomic Energy Agency (personal communications)

J. Klimowicz, National Atomic Energy Agency (personal communications)

Portugal

Ministério da Ciência, Tecnologia e Ensino Superior, Istituto Tecnológico e Nuclear, I.P., Programas de Monitorização Radiológica Ambiental (Ano 2007). ITN, Série A, nº32/2008, ISBN 978-972-8660-33-8.

Ministério da Ciência, Tecnologia e Ensino Superior, Istituto Tecnológico e Nuclear, I.P., Programas de Monitorização Radiológica Ambiental (Ano 2008). ITN, Série A, nº33/2009, ISBN 978-989-96542-0-4.

Ministério da Ciência, Tecnologia e Ensino Superior, Istituto Tecnológico e Nuclear, I.P., Programas de Monitorização Radiológica Ambiental (Ano 2009). ITN, Série A, nº37/2010, ISBN 978-989-96542-5-9.

Ministério da Ciência, Tecnologia e Ensino Superior, Istituto Tecnológico e Nuclear, I.P., Programas de Monitorização Radiológica Ambiental (Ano 2010). ITN, Série A, nº38/2011, ISBN 978-989-96542-6-6.

Instituto Superior Técnico, Laboratório de Proteçao e Segurança Radiológica, Programas de Monitorização Radiológica Ambiental (Ano 2011). LPSR-A, nº39/13, ISBN978-989-96542-7-3.

M.J. Madruga, Instituto Tecnológico e Nuclear (ITN), Unidade de Protecção e Segurança Radiológica (UPSR) (personal communications) Instituto Superior Técnico, Campus Tecnológico e Nuclear, Laboratório de Proteção e Segurança Radiológica Programas de Monitorização Radiológica Ambiental (Ano 2012) Relatório LPSR-A, nº 40/14 ISBN 978-989-96542-8-0

Instituto Superior Técnico, Campus Tecnológico e Nuclear, Laboratório de Proteção e Segurança Radiológica Programas de Monitorização Radiológica Ambiental (Ano 2013) Relatório LPSR-A, nº 41/15 ISBN 978-989-96542-9-7

Instituto Superior Técnico, Campus Tecnológico e Nuclear, Laboratório de Proteção e Segurança Radiológica Programas de Monitorização Radiológica Ambiental (Ano 2014) Relatório LPSR-A, nº 42/116 ISBN 978-989-20-6528-1

Romania

E. Simion, National Environmental Radioactivity Laboratory, Bucharest (personal communications)

Ana Elena Gherasim, National Environmental Radioactivity Laboratory, Bucharest (personal communications)

Slovak Republic

Emil Bédi and A. Ondruskova, Public Health Authority of the Slovak republic; (personal communications)

Ivan Klenovič, Public Health Authority of the Slovak republic; (personal communications)

Slovenia

M. Cindro and M. Križman, Slovenian Nuclear Safety Administration, Ljubljana (personal communications)

Spain

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2007, 21.2008. INT-04.17

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2008, 23.2009. INT-04.19

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2009, 28.2010. INT-04.24

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2010, 30.2011. INT-04.26

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2011, 35.2012. INT-04.28

S. Luque, I. Marugán, C. Rey, R. Salas and A. Sterling, Consejo de Seguridad Nuclear, Madrid (Personal communications)

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental – resultados 2012, 41.2013. INT-04.34

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental – resultados 2013, 41.2014. INT-04.35

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental – resultados 2014, 48.2015. INT-04.37

S. Luque, I. Marugán, C. Rey, R. Salas and L. Ramos, Consejo de Seguridad Nuclear, Madrid (Personal communications)

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental – resultados 2015, 48.2017. INT-04.3

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental – resultados 2016, 49.2018. INT-04.39

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental – resultados 2017, 50.2019. INT-04.40

P. Martínez, S. Luque, A. Ortiz, B. Sánchez, J.A. Trinidad, C. Rey and M.J. Muñoz, Consejo de Seguridad Nuclear, Madrid (Personal communications)

Sweden

Andersson, P. 2021. Swedish Radiation Safety Authority, Stockholm; (personal communications)

SSM 2021. Data from the Swedish national monitoring program available on the webpage from the Swedish Radiation Safety Authority (in Swedish). https:// www.stralsakerhetsmyndigheten.se/omraden/ miljoovervakning/

Söderström, C., Kastlander, J. and Meister, M. 2016. Radionuclide particles in ground level air in Sweden during 2015. FOI report FOI-R--4274--SE, Swedish Defence Research Agency.

During, C., Kastlander, J., Meister, M. and Söderström, C. 2017. Radionuclide particles in ground level air in Sweden during 2016. FOI report FOI-R--4440--SE, Swedish Defence Research Agency.

Goliath, M., Kastlander, J., Meister, M., Olsson, H. and Söderström, C. 2018. Radionuclide particles in ground level air in Sweden during 2017. FOI report FOI-R--4621--SE, Swedish Defence Research Agency.

Goliath, M., Hellesen, C., Karlkvist, L., Kastlander, J., Olsson, H. and Söderström, C. 2019. Radionuclide particles in ground level air in Sweden during 2018. FOI report FOI-R--4778--SE, Swedish Defence Research Agency.

Elmgren, K., Hellesen, C., Goliath, M., Karlkvist, L., Kastlander, J., Olsson, H. and Söderström, C. 2020. Radionuclide particles in ground level air in Sweden during 2019. FOI report FOI-R--5016--SE, Swedish Defence Research Agency.

Söderström, C., Elmgren, K., Goliath, M., Hellesen, C.,Karlkvist, L., Kastlander, J. and Olsson, H. 2021. Radionuclide particles in ground level air in Sweden during 2020. FOI report FOI-R--5150--SE, Swedish Defence Research Agency.

Söderström, C., Elmgren, K., Goliath, M., Hellesen, C., Karlkvist, L., Kastlander, J. and Olsson, H. 2021. Radionuclide particles in ground level air in Sweden during 2020. FOI report FOI-R--5150--SE, Swedish Defence research Agency.

United Kingdom

A. Field, A. Funnell, C. Poynton, S. Runacres and P. Tossell, Food Standards Agency; T. Brown, DEFRA; M. Davidson and L. Mitchel, Health Protection Agency; M. Toner, SEPA; H. Mason, LGC; J. Rowe, Environment Agency; (personal communications)

Radioactivity in Food and the Environment, 2018

This report was compiled by the Centre for Environment, Fisheries, and Aquaculture Science on behalf of the Environment Agency, Food Standards Agency, Food Standards Scotland, Natural Resources Wales, Northern Ireland Environment Agency and the Scottish Environment Protection Agency.

Mark Toner, SEPA; Laura Davies, SEPA; Gillian Sinclair SEPA Personal communication.

Environment Agency, Northern Ireland Environment Agency, Food Standards Agency and Scottish Environment Protection Agency; Radioactivity in Food and the Environment reports, 2020-2020; RIFE-21-26, October 2016 onwards

APPENDIX F

The REM Data bank

After the accident at Chernobyl, a task Force was created by the relevant Directorates of the European Commission (EC) to re-examine all aspects of nuclear safety. The necessity of interpreting a large number of data on environmental radioactivity led to the creation of the REM (Radioactivity Environmental Monitoring) data bank at the Joint Research Centre, Ispra in Italy for holding data on the contamination resulting from the Chernobyl accident.

At a meeting with Member State representatives for the purposes of Articles 35 and 36 of the Euratom Treaty (Luxembourg, October 1987), it was decided to take advantage of the informatic structure of the REM data bank to streamline the various formats adopted in the EU for reporting routine environmental measurements and to prepare the EC report concerning these data in a more systematic way.

The information in REM largely concerns radioactivity levels in Europe of air, deposition, water, milk, meat, crops and vegetables from 1.1.1984 and is continuously being updated. Each data record contains information describing the sample measurement (value, nuclide, etc.), the sample type, location and date of sampling and source of the data.

The REM Data bank contains more than 5,400,000 data records as of October 2023.

For further information please contact: JRC-REMDBSUPPORT@EC.EUROPA.EU

Appendix G

List of Figures and Tables

Introduction

Fig. 1	Definition of the geographical regions used in
	the Data tables And figures; page 10
Table 1	Definition of country partitions; page 11

Dense network results (2015-2020)

Fig. A1	Sampling locations and geographical averages by year for gross- β in airborne particulates, 2015; page 12
Table A1	Gross-β in airborne particulates, 2015; page
Fig. A2	Sampling locations and geographical averages by year for gross- β in airborne particulates, 2016; page 14
Table A2	Gross- β in airborne particulates, 2016; page 15
Fig. A3	Sampling locations and geographical averages by year for gross- β in airborne particulates, 2017; page 16
Table A3	Gross-β in airborne particulates, 2017; page 17
Fig. A4	Sampling locations and geographical averages by year for gross- β in airborne particulates, 2018; page 18
Table A4	Gross-β in airborne particulates, 2018; page 19
Fig. A5	Sampling locations and geographical averages by year for gross- β in airborne particulates, 2019; page 20
Table A5	Gross- β in airborne particulates, 2019; page 21
Fig. A6	Sampling locations and geographical averages by year for gross- β in airborne particulates, 2020; page 22
Table A6	Gross-β in airborne particulates, 2020; page 23
Fig. A7	Sampling locations and geographical averages by year for ¹³⁷ Cs in airborne particulates, 2015; page 24
Table A7	¹³⁷ Cs in airborne particulates, 2015; page 25
Fig. A8	Sampling locations and geographical averages by year for ¹³⁷ Cs in airborne particulates, 2016; page 26
Table A8	¹³⁷ Cs in airborne particulates, 2016; page 27
Fig. A9	Sampling locations and geographical averages by year for ¹³⁷ Cs in airborne particulates, 2017; page 28
Table A9	¹³⁷ Cs in airborne particulates, 2017; page 29
Fig. A10	Sampling locations and geographical averages by year for ¹³⁷ Cs in airborne particulates, 2018; page 30
Table A10	¹³⁷ Cs in airborne particulates, 2018; page 31
Fig. A11	Sampling locations and geographical averages
C C	by year for ¹³⁷ Cs in airborne particulates, 2019; page 32
Table A11	¹³⁷ Cs in airborne particulates, 2019; page 33
Fig. A12	Sampling locations and geographical averages by year for ¹³⁷ Cs in airborne particulates, 2020; page 34
Table A12	¹³⁷ Cs in airborne particulates, 2020; page 35
Fig. S1	Sampling locations for residual- β and ¹³⁷ Cs in surface water (Tables S1 – S72); page 36

- Fig. S2 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Austria; page 37
- Fig. S3 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Belgium; page 38
- Fig. S4 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Bulgaria; page 39
- Fig. S5 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): Croatia; page 40
- Fig. S6 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): Cyprus; page 41
- Fig. S7 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 – S72): Czech Republic; page 42
- Fig. S8 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Denmark; page 43
- Fig. S9 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Estonia; page 44
- Fig. S10 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): Finland; page 45
- Fig. S11 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): France; page 46
- Fig. S12 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Germany; page 47
- Fig. S13 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Hungary; page 48
- Fig. S14 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): Italy; page 49
- Fig. S15 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): Latvia; page 50
- Fig. S16 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Lithuania; page 51
- Fig. S17 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Luxembourg; page 52
- Fig. S18 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): Malta, Canary Islands; page 53
- Fig. S19 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): the Netherlands; page 54
- Fig. S20 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Poland; page 55
- Fig. S21 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 S72): Portugal; page 56
- Fig. S22 Sampling locations for residual-β and ¹³⁷Cs in surface water (Tables S1 – S72): Romania; page 57
- Fig. S23 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): Slovenia; page 58
- Fig. S24 Sampling locations for residual- β and ¹³⁷Cs in surface water (Tables S1 S72): Spain; page 59

Fig. S25	surfa	pling locations for residual-β and ¹³⁷ Cs in ce water (Tables S1 – S72): Sweden;
Fig. S26	surfa	pling locations for residual-β and ¹³⁷ Cs in ce water (Tables S1 – S72): United
Tables S1-	-	dom; page 61 Residual-β in surface water, 2015; pages 62-67
Tables S7-	S12	Residual-β in surface water, 2016; pages 68-73
Tables S13	-S18	Residual- β in surface water, 2017; pages 74-79
Tables S19	-S24	Residual- β in surface water, 2018; pages 80-85
Tables S25	-S30	Residual-β in surface water, 2019; pages 86-91
Tables S31	-S36	Residual- β in surface water, 2020; pages 92-97
Tables S37	-S42	¹³⁷ Cs in surface water, 2015; pages 98-103
Tables S43	-S48	¹³⁷ Cs in surface water, 2016; pages 104-109
Tables S49	-S54	¹³⁷ Cs in surface water, 2017; pages 110-115
Tables S55	-S60	¹³⁷ Cs in surface water, 2018; pages 116-121
Tables S61	-S66	¹³⁷ Cs in surface water, 2019; pages 122-127
Tables S67	-S72	¹³⁷ Cs in surface water, 2020; pages 128-133
Fig. W1		pling locations and geographical averages ear for ³ H in drinking water, 2015; page
Table W1		drinking water, 2015; page 135
Fig. W2	Sam	pling locations and geographical averages ear for ³ H in drinking water, 2016; page
Table W2		drinking water, 2016; page 137
Fig. W3		pling locations and geographical averages
1 ig. 110	by ye 138	ear for ³ H in drinking water, 2017; page
Table W3	³H in	drinking water, 2017; page 139
Fig. W4		pling locations and geographical averages ear for ³ H in drinking water, 2018; page
Table W4		drinking water, 2018; page 141
Fig. W5		pling locations and geographical averages
0		ear for ³ H in drinking water, 2019; page
Table W5		drinking water, 2019; page 143
Fig. W6		pling locations and geographical averages ear for ³ H in drinking water, 2020; page
Table W6	³ H in	drinking water, 2020; page 145
Fig. W7	Sam	pling locations and geographical averages ear for ⁹⁰ Sr in drinking water, 2015; page
Table W7		n drinking water, 2015; page 147
Fig. W8	Sam	pling locations and geographical averages ear for ⁹⁰ Sr in drinking water, 2016; page
Table W8		n drinking water, 2016; page 149
Fig. W9	Sam by ye	pling locations and geographical averages ar for ⁹⁰ Sr in drinking water, 2017; page
Table W9	150 ⁰Sr i	n drinking water, 2017; page 151

Fig. W10	Sampling locations and geographical averages by year for ⁹⁰ Sr in drinking water, 2018; page 152
Table W10	⁰Sr in drinking water, 2018; page 153
Fig. W11	Sampling locations and geographical averages by year for ⁹⁰ Sr in drinking water, 2019; page 154
Table W11	⁰Sr in drinking water, 2019; page 155
Fig. W12	Sampling locations and geographical averages by year for ⁹⁰ Sr in drinking water, 2020; page 156
Table W12	5,, 1, 5,
Fig. W13	Sampling locations and geographical averages by year for ¹³⁷ Cs in drinking water, 2015; page 158
Table W13	¹³⁷ Cs in drinking water, 2015; page 159
Fig. W14	Sampling locations and geographical averages by year for ¹³⁷ Cs in drinking water, 2016; page 160
Table W14	5 ,, 1 5 -
Fig. W15	Sampling locations and geographical averages by year for ¹³⁷ Cs in drinking water, 2017; page 162
Table W15	¹³⁷ Cs in drinking water, 2017; page 163
Fig. W16	Sampling locations and geographical averages by year for ¹³⁷ Cs in drinking water, 2018; page 164
Table W16	¹³⁷ Cs in drinking water, 2018; page 165
Fig. W17	Sampling locations and geographical averages by year for ¹³⁷ Cs in drinking water, 2019; page 166
Table W17	¹³⁷ Cs in drinking water, 2019; page 167
Fig. W18	Sampling locations and geographical averages by year for ¹³⁷ Cs in drinking water, 2020; page 168
Table W18	¹³⁷ Cs in drinking water, 2020; page 169
Fig. M1 Table M1	Sampling locations and geographical averages by year for ⁹⁰ Sr in milk, 2015; page 170 ⁹⁰ Sr in milk, 2015; page 171
Fig. M2	Sampling locations and geographical averages
Table M2	by year for ⁹⁰ Sr in milk, 2016; page 172 ⁹⁰ Sr in milk, 2016; page 173
Fig. M3	Sampling locations and geographical averages by year for ⁹⁰ Sr in milk, 2017; page 174
Table M3	⁹⁰ Sr in milk, 2017; page 175 Sampling locations and geographical averages
Fig. M4 Table M4	by year for ⁹⁰ Sr in milk, 2018; page 176 ⁹⁰ Sr in milk, 2018; page 177
Fig. M5	Sampling locations and geographical averages
0	by year for ⁹⁰ Sr in milk, 2019; page 178
Table M5	⁹⁰ Sr in milk, 2019; page 179
Fig. M6	Sampling locations and geographical averages by year for ⁹⁰ Sr in milk, 2020; page 180 ⁹⁰ Sr in milk, 2020; page 181
Table M6 Fig. M7	Sampling locations and geographical averages
rig. wii	by year for ¹³⁷ Cs in milk, 2015; page 182
Table M7	¹³⁷ Cs in milk, 2015; page 183
Fig. M8	Sampling locations and geographical averages by year for ¹³⁷ Cs in milk, 2016; page 184
Table M8	¹³⁷ Cs in milk, 2016; page 185
Fig. M9 Table M9	Sampling locations and geographical averages by year for ¹³⁷ Cs in milk, 2017; page 186 ¹³⁷ Cs in milk, 2017; page 187
Fig. M10	Sampling locations and geographical averages
Table M10	by year for ¹³⁷ Cs in milk, 2018; page 188 ¹³⁷ Cs in milk, 2018; page 189

Fig. M11	Sampling locations and geographical averages by year for ¹³⁷ Cs in milk, 2019; page 190
Table M11	¹³⁷ Cs in milk, 2019; page 191
Fig. M12	Sampling locations and geographical averages by year for ¹³⁷ Cs in milk, 2020; page 192
Table M12	¹³⁷ Cs in milk, 2020; page 193
Fig. D1	Sampling locations and geographical averages by year for ⁹⁰ Sr in mixed diet, 2015; page 194
Table D1	⁹⁰ Sr in mixed diet, 2015; page 195
Fig. D2	Sampling locations and geographical averages by year for ⁹⁰ Sr in mixed diet, 2016; page 196
Table D2	⁹⁰ Sr in mixed diet, 2016; page 197
Fig. D3	Sampling locations and geographical averages by year for ⁹⁰ Sr in mixed diet, 2017; page 198
Table D3	⁹⁰ Sr in mixed diet, 2017; page 199
Fig. D4	Sampling locations and geographical averages by year for ⁹⁰ Sr in mixed diet, 2018; page 200
Table D4	⁹⁰ Sr in mixed diet, 2018; page 201
Fig. D5	Sampling locations and geographical averages by year for ⁹⁰ Sr in mixed diet, 2019; page 202
Table D5	⁹⁰ Sr in mixed diet, 2019; page 203
Fig. D6	Sampling locations and geographical averages by year for ⁹⁰ Sr in mixed diet, 2020; page 204
Table D6	⁹⁰ Sr in mixed diet, 2020; page 205
Fig. D7	Sampling locations and geographical averages by year for ¹³⁷ Cs in mixed diet, 2015; page 206
Table D7	¹³⁷ Cs in mixed diet, 2015; page 207
Fig. D8	Sampling locations and geographical averages by year for ¹³⁷ Cs in mixed diet, 2016; page 208
Table D8	¹³⁷ Cs in mixed diet, 2016; page 209
Fig. D9	Sampling locations and geographical averages by year for ¹³⁷ Cs in mixed diet, 2017; page 210
Table D9	¹³⁷ Cs in mixed diet, 2017; page 211
Fig. D10	Sampling locations and geographical averages by year for ¹³⁷ Cs in mixed diet, 2018; page 212
Table D10	¹³⁷ Cs in mixed diet, 2018; page 213
Fig. D11	Sampling locations and geographical averages by year for ¹³⁷ Cs in mixed diet, 2019; page 214
Table D11	¹³⁷ Cs in mixed diet, 2019; page 215
Fig. D12	Sampling locations and geographical averages by year for ¹³⁷ Cs in mixed diet, 2020; page 216
Table D12	¹³⁷ Cs in mixed diet, 2020; page 217

Sparse network results (1984-2020)

Fig. A13 Sampling locations for 7Be and 137Cs in airborne particulates considered in Figures A14 - A41; page 219 Activity trends for 7Be in airborne particulates Fig. A14 (Helsinki and Ivalo); page 220 Fig. A15 Activity trends for 'Be in airborne particulates (Baia Mare, Bucharest and Sofia); page 220 Activity trends for 7Be in airborne particulates Fig. A16 (Barcelona, Bilbao and Madrid); page 221 Activity trends for 7Be in airborne particulates Fig. A17 (Milan and Seyne-sur-Mer); page 221 Fig. A18 Activity trends for ⁷Be in airborne particulates (La Laguna-Tenerife, Sacavém and Sevilla); page 222

Fig. A19 Activity trends for ⁷Be in airborne particulates (Brindisi and Paola); page 222

Fig. A20 Activity trends for ⁷Be in airborne particulates (Umeå, Kista and Risø); page 223

- Fig. A21 Activity trends for ⁷Be in airborne particulates (Harku and Utena); page 223
- Fig. A22 Activity trends for ⁷Be in airborne particulates (Chilton, Lerwick and Clonskeagh); page 224

- Fig. A23 Activity trends for ⁷Be in airborne particulates (Bilthoven, Brussels and Luxembourg); page 224
- Fig. A24 Activity trends for ⁷Be in airborne particulates (Braunschweig, Offenbach and Berlin); page 225
- Fig. A25 Activity trends for ⁷Be in airborne particulates (Warsaw, Cracow and Prague); page 225
- Fig. A26 Activity trends for ⁷Be in airborne particulates (Freiburg, Ljubljana and Muenchen-Neuherberg); page 226
- Fig. A27 Activity trends for ⁷Be in airborne particulates (Vienna-Ages, Bratislava and Budapest); page 226
- Fig. A28 Activity trends for ¹³⁷Cs in airborne particulates (Helsinki and Ivalo); page 227
- Fig. A29 Activity trends for ¹³⁷Cs in airborne particulates (Baia Mare, Bucharest and Sofia); page 227
- Fig. A30 Activity trends for ¹³⁷Cs in airborne particulates (Barcelona, Bilbao and Madrid); page 228
- Fig. A31 Activity trends for ¹³⁷Cs in airborne particulates (Milan and Seyne-sur-Mer); page 228
- Fig. A32 Activity trends for ¹³⁷Cs in airborne particulates (La Laguna-Tenerife, Sacavém and Sevilla); page 229
- Fig. A33 Activity trends for ¹³⁷Cs in airborne particulates (Brindisi, Paola and Nicosia); page 229
- Fig. A34 Activity trends for ¹³⁷Cs in airborne particulates (Umeå, Kista and Risø); page 230
- Fig. A35 Activity trends for ¹³⁷Cs in airborne particulates (Harku, Utena and Baldone; radons); page 230
- Fig. A36 Activity trends for ¹³⁷Cs in airborne particulates (Chilton, Lerwick and Clonskeagh); page 231
- Fig. A37 Activity trends for ¹³⁷Cs in airborne particulates (Bilthoven, Brussels and Luxembourg); page 231
- Fig. A38 Activity trends for ¹³⁷Cs in airborne particulates (Braunschweig, Offenbach and Berlin); page 232
- Fig. A39 Activity trends for ¹³⁷Cs in airborne particulates (Warsaw, Cracow and Prague); page 232
- Fig. A40 Activity trends for ¹³⁷Cs in airborne particulates (Freiburg, Ljubljana and Muenchen-Neuherberg); page 233
- Fig. A41 Activity trends for ¹³⁷Cs in airborne particulates (Vienna-Ages, Bratislava and Budapest-Nrirr); page 233
- Fig. S27 Sampling locations for ¹³⁷Cs in surface water considered in Figures S28 S42; page 235
- Fig. S28 Activity trends for ¹³⁷Cs in surface water (Langwedel, Koblenz and Tangermünde); page 236
- Fig. S29 Activity trends for ¹³⁷Cs in surface water (Monsin, Hastière and Andenne); page 236
- Fig. S30 Activity trends for ¹³⁷Cs in surface water (Warsaw, Wroclaw and Bohumin); page 237
- Fig. S31 Activity trends for ¹³⁷Cs in surface water (Le Vesinet, Vallabrègues and Schengen); page 237
- Fig. S32 Activity trends for ¹³⁷Cs in surface water (Walton and Balbriggan); page 238
- Fig. S33 Activity trends for ¹³⁷Cs in surface water (Regensburg, Jochenstein and Budapest); page 238
- Fig. S34 Activity trends for ¹³⁷Cs in surface water (Bratislava and Moravský Svätý Ján); page 239

Fig. S35	Activity trends for ¹³⁷ Cs in surface water (Kozloduj, Wied Ghammieq and Krško); page 239
Fig. S36	Activity trends for ¹³⁷ Cs in surface water (Cabo
Fig. S37	Ajo and Cabo de Creus); page 240 Activity trends for ¹³⁷ Cs in surface water (Embalse Alcantara and Vila Velha de Ródão); page 240
Fig. S38	Activity trends for ¹³⁷ Cs in surface water (Cernavoda and Miercureaciuc); page 241
Fig. S39	Activity trends for ¹³⁷ Cs in surface water (Norsborg and Östersund-Storsjön); page 241
Fig. S40	Activity trends for ¹³⁷ Cs in surface water (Kemi and Kotka); page 242
Fig. S41	Activity trends for ¹³⁷ Cs in surface water (Narva, Riga and Kauno Marios); page 242
Fig. S42	Activity trends for ¹³⁷ Cs in surface water (Hesselø and Terschelling); page 243
Fig. W19	Sampling locations for ³ H, ⁹⁰ Sr and ¹³⁷ Cs in drinking water considered in Figures W20 – W54; page 245
Fig. W20	Activity trends for ³ H in drinking water (Rovaniemi and Helsinki); page 246
Fig. W21	Activity trends for ³ H in drinking water
Fig. W22	(Ljubljana and Sliema); page 246 Activity trends for ³ H in drinking water (Nîmes
Fig. W23	and Bilbao); page 247 Activity trends for ³ H in drinking water (Madrid
Fig. W24	and Barcelona); page 247 Activity trends for ³ H in drinking water (Sevilla, La Laguna-Tenerife and Castelo de Bode);
Fig. W25	page 248 Activity trends for ³ H in drinking water (Rucharact and Constanta): page 248
Fig. W26	(Bucharest and Constanta); page 248 Activity trends for ³ H in drinking water (Östersund-Storsjön and Norsborg); page 249
Fig. W27	Activity trends for ³ H in drinking water (Tallinn and Riga); page 249
Fig. W28	Activity trends for ³ H in drinking water (Utena and Vilnius); page 250
Fig. W29	Activity trends for ³ H in drinking water (Tunstall and Cornwall); page 250
Fig. W30	Activity trends for ³ H in drinking water (Langelsheim, Wiesbaden and Berlin); page 251
Fig. W31	Activity trends for ³ H in drinking water (Brussels and Esch-sur-Sûre); page 251
Fig. W32	Activity trends for ³ H in drinking water (Svihof and Vienna-Ages); page 252
Fig. W33	Activity trends for ³ H in drinking water (Bratislava and Budapest-Nrirr); page 252
Fig. W34	Activity trends for ⁹⁰ Sr in drinking water (Rovaniemi, Helsinki and Tallinn); page 253
Fig. W35	Activity trends for ⁹⁰ Sr in drinking water (Östersund-Storsjön and Norsborg); page 253
Fig. W36	Activity trends for ⁹⁰ Sr in drinking water (Cornwall, Tunstall and Nîmes); page 254
Fig. W37	Activity trends for ⁹⁰ Sr in drinking water (Langelsheim, Wiesbaden and Berlin); page 254
Fig. W38	Activity trends for ⁹⁰ Sr in drinking water (Frauenau and Svihof); page 255
Fig. W39	Activity trends for ⁹⁰ Sr in drinking water (Vienna-Ages, Bratislava and Deva); page 255
Fig. W40	Activity trends for ⁹⁰ Sr in drinking water (Ljubljana, Sliema and Sofia); page 256

Fig. W41	Activity trends for ⁹⁰ Sr in drinking water (Bilbao,
	Barcelona and Madrid); page 256

- Fig. W42 Activity trends for ⁹⁰Sr in drinking water (Sevilla, La Laguna-Tenerife and Castelo de Bode); page 257
- Fig. W43 Activity trends for ¹³⁷Cs in drinking water (Rovaniemi and Helsinki); page 258
- Fig. W44 Activity trends for ¹³⁷Cs in drinking water (Nîmes, Milano and Ljubljana); page 258
- Fig. W45 Activity trends for ¹³⁷Cs in drinking water (Bilbao, Madrid and Barcelona); page 259
- Fig. W46 Activity trends for ¹³⁷Cs in drinking water (Sevilla, Castelo de Bode and La Laguna-Tenerife); page 259
- Fig. W47 Activity trends for ¹³⁷Cs in drinking water (Sliema, Nicosia and Deva); page 260
- Fig. W48 Activity trends for ¹³⁷Cs in drinking water (Östersund-Storsjön and Norsborg); page 260
- Fig. W49 Activity trends for ¹³⁷Cs in drinking water (Tallinn and Riga); page 261
- Fig. W50 Activity trends for ¹³⁷Cs in drinking water (Cornwall, Tunstall and Esch-sur-Sûre); page 261
- Fig. W51 Activity trends for ¹³⁷Cs in drinking water (Langelsheim, Wiesbaden and Berlin); page 262
- Fig. W52 Activity trends for ¹³⁷Cs in drinking water (Białystok, Bydgoszcz and Wroclaw); page 262
- Fig. W53 Activity trends for ¹³⁷Cs in drinking water (Frauenau and Svihof); page 263
- Fig. W54 Activity trends for ¹³⁷Cs in drinking water (Vienna-Ages, Bratislava and Budapest-Nrirr); page 263
- Fig. M13 Sampling locations for ⁹⁰Sr and ¹³⁷Cs in milk considered in Figures M14 M45; page 265
- Fig. M14 Activity trends for ⁹⁰Sr in milk (Hjørring, Rovaniemi and Helsinki); page 266
- Fig. M15 Activity trends for ⁹⁰Sr in milk (Cléville, Le Vesinet and Méaudre); page 266
- Fig. M16 Activity trends for ⁹⁰Sr in milk (Ljubljana and Budapest-Nrirr); page 267
- Fig. M17 Activity trends for ⁹⁰Sr in milk (Sofia and Nicosia); page 267
- Fig. M18 Activity trends for ⁹⁰Sr in milk (Cantabria, Leon and Barcelona); page 268
- Fig. M19 Activity trends for ⁹⁰Sr in milk (Sevilla and Vila do Conde); page 268
- Fig. M20 Activity trends for ⁹⁰Sr in milk (Hamrun and Drobeta-Turnu Severin); page 269
- Fig. M21 Activity trends for ⁹⁰Sr in milk (Umeå and Stockholm); page 269
- Fig. M22 Activity trends for ⁹⁰Sr in milk (Harjumaa, Riga and Vilnius); page 270
- Fig. M23 Activity trends for ⁹⁰Sr in milk (Country Tyrone and Dublin); page 270
- Fig. M24 Activity trends for ⁹⁰Sr in milk (Cambridgeshire, Edinburgh and Gwent); page 271
- Fig. M25 Activity trends for ⁹⁰Sr in milk (Prenzlau, Oldenburg and Hungen); page 271
- Fig. M26 Activity trends for ⁹⁰Sr in milk (Berlin and Freiburg); page 272
- Fig. M27 Activity trends for ⁹⁰Sr in milk (Białystok, Prague and Kunin); page 272
- Fig. M28 Activity trends for ⁹⁰Sr in milk (Vienna-Ages, Bratislava and Brussels); page 273
- Fig. M29 Activity trends for ¹³⁷Cs in milk (Hjørring, Rovaniemi and Helsinki); page 274

Fig. M30	Activity trends for ¹³⁷ Cs in milk (Brussels and
-	Burmerange); page 274
Fig. M31	Activity trends for ¹³⁷ Cs in milk (Prague and Kunin); page 275
Fig. M32	Activity trends for ¹³⁷ Cs in milk (Méaudre and
1 lg. 1052	Le Vesinet); page 275
Fig. M33	Activity trends for ¹³⁷ Cs in milk (Freiburg,
0	Ljubljana and Budapest-Nrirr); page 276
Fig. M34	Activity trends for ¹³⁷ Cs in milk (Vienna-Ages,
	Bratislava and Sofia); page 276
Fig. M35	Activity trends for ¹³⁷ Cs in milk (Cantabria,
Fig. M36	Leon and Barcelona); page 277 Activity trends for ¹³⁷ Cs in milk (Sevilla and Vila
FIG. MISO	do Conde); page 277
Fig. M37	Activity trends for ¹³⁷ Cs in milk (Hamrun,
U U	Nicosia and Drobeta-Turnu Severin); page 278
Fig. M38	Activity trends for ¹³⁷ Cs in milk (Umeå and
	Stockholm); page 278
Fig. M39	Activity trends for ¹³⁷ Cs in milk (Harjumaa, Riga and Vilnius); page 279
Fig. M40	Activity trends for ¹³⁷ Cs in milk (County Tyrone
rig. mito	and Dublin); page 279
Fig. M41	Activity trends for ¹³⁷ Cs in milk (Edinburgh and
	Gwent); page 280
Fig. M42	Activity trends for ¹³⁷ Cs in milk
E: 1440	(Cambridgeshire and Preston); page 280
Fig. M43	Activity trends for ¹³⁷ Cs in milk (Oldenburg and Hungen); page 281
Fig. M44	Activity trends for ¹³⁷ Cs in milk (Berlin and
	Prenzlau); page 281
Fig. M45	Activity trends for ¹³⁷ Cs in milk (Białystok and
E : D (0	Katowice); page 282
Fig. D13	Sampling locations for ⁹⁰ Sr and ¹³⁷ Cs in mixed diet considered in Figures D14 – D37; page
	283
Fig. D14	Activity trends for ⁹⁰ Sr in mixed diet (Helsinki
-	and Rovaniemi); page 284
Fig. D15	Activity trends for ⁹⁰ Sr in mixed diet (Sevilla
	and La Laguna-Tenerife); page 284
Fig. D16	Activity trends for ⁰Sr in mixed diet (Lisbon, Tal Qroqq and Craiova); page 285
Fig. D17	Activity trends for ⁹⁰ Sr in mixed diet (Umeå,
U	Stockholm and Copenhagen); page 285
Fig. D18	Activity trends for ⁹⁰ Sr in mixed diet (Tallinn,
	Riga and Vilnius); page 286
Fig. D19	Activity trends for ⁰Sr in mixed diet (Oxford, Cardiff and Belfast); page 286
Fig. D20	Activity trends for ⁹⁰ Sr in mixed diet (Brussels,
0	Le Vesinet and Avignon); page 287
Fig. D21	Activity trends for 90Sr in mixed diet (Kiel,
- : -	Darmstadt and Berlin); page 287
Fig. D22	Activity trends for ⁹⁰ Sr in mixed diet (Oberschleissheim, Prague and Vienna-Ages);
	page 288
Fig. D23	Activity trends for ⁹⁰ Sr in mixed diet (Bratislava,
U U	Budapest-Nrirr and Sofia); page 288
Fig. D24	Activity trends for ⁹⁰ Sr in mixed diet (Bilbao,
	Madrid and Barcelona); page 289
Fig. D25	Activity trends for ¹³⁷ Cs in mixed diet (Helsinki, Rovaniemi and Umeå); page 290
Fig. D26	Activity trends for ¹³⁷ Cs in mixed diet (Le
	Vesinet and Avignon); page 290
Fig. D27	Activity trends for ¹³⁷ Cs in mixed diet (Bilbao,
	Madrid and Barcelona); page 291
Fig. D28	Activity trends for ¹³⁷ Cs in mixed diet (Sevilla, La Laguna-Tenerife and Lisbon); page 291
	La Laguna Tononio and Libbon, page 201

- Fig. D29 Activity trends for ¹³⁷Cs in mixed diet (Tal Qroqq and Craiova); page 292
- Fig. D30 Activity trends for ¹³⁷Cs in mixed diet (Copenhagen, Stockholm and Kiel); page 292
- Fig. D31Activity trends for 137Cs in mixed diet (Riga,
Tallinn and Vilnius); page 293
- Fig. D32 Activity trends for ¹³⁷Cs in mixed diet (Belfast and Dublin); page 293
- Fig. D33 Activity trends for ¹³⁷Cs in mixed diet (Oxford and Cardiff); page 294
- Fig. D34Activity trends for ¹³⁷Cs in mixed diet (Brussels
and Grand-Duche du Luxembourg); page 294
- Fig. D35 Activity trends for ¹³⁷Cs in mixed diet (Berlin and Darmstadt); page 295
- Fig. D36 Activity trends for ¹³⁷Cs in mixed diet (Oberschleissheim, Prague and Vienna-Ages); page 295
- Fig. D37 Activity trends for ¹³⁷Cs in mixed diet (Bratislava, Budapest-Nrirr and Sofia); page 296

Glossary

ABSORBED DOSE	The amount of energy imparted by the ionising radiation to unit mass of
	absorbing material. It is expressed in gray, Gy. (1 Gy = 1 Joule per kilogram).
ACTIVITY	The amount of a radionuclide at a given time. It expresses the rate at which radioactive transformations occur. The unit of measurement is the becquerel, Bq. (1 Bq = one transformation per second).
ALPHA PARTICLE	A particle, consisting of two protons and two neutrons, which is emitted from the nucleus of certain radionuclides.
ΑΤΟΜ	The smallest portion of an element that can combine chemically with other atoms.
BECQUEREL	see Activity.
BETA PARTICLE	High energy electron which is emitted from the nucleus of certain radionuclides.
CONSTRAINT VALUE	Activity value known to be less than a certain value.
COSMIC RAYS	High energy ionising radiation from outer space.
DOSE	The term used either for individual absorbed dose or effective dose.
DOSE LIMIT	Recommended by the ICRP and authorised by regulatory authorities to apply to occupational and public exposure.
EFFECTIVE DOSE	Weighted sum of the equivalent doses to the various organs or tissues. The weighing factors are derived from the risk of stochastic effect to the individual tissue or organ. The unit of measurement is the sievert, Sv.
ENVIRONMENTAL MONITORING	The application of automatic or mobile equipment to measure the activity in the environment of a release of radioactivity. The parameters usually include the activity of air, ground deposition, river water, drinking water and milk.
EQUIVALENT DOSE	The quantity obtained by multiplying the absorbed dose by a factor to take into account the relative harmfulness of the various types of ionising radiations. The unit is the sievert, Sv. One sievert produces the same biological effect irrespective of the type of radiation.
GAMMA RAY	A quantity of ionising electromagnetic radiation which is emitted by certain radionuclides.
GRAY	See Absorbed Dose.
GROSS BETA	The total measured beta activity in a sample. Depending on the measurement methodology it may exclude tritium and/or radon.
HALF-LIFE	The time taken for the activity of a radionuclide to lose half of its value by decay. Also referred to as "physical half-life".
ICRP	The International Commission on Radiological Protection is a non-governmental scientific organisation which publishes recommendations on radiation protection.
IONISING RADIATION	Radiation which has sufficient energy to produce ionisation in matter; includes alpha particles, beta particles, gamma rays, X-rays and neutrons (neutrons cause ionisation indirectly).
ISOTOPE	Nuclides of the same element but with different number of neutrons.
NATURAL BACKGROUND	The radiation field due to naturally occurring radioactivity. It includes radiation arising from the presence of long-lived radionuclides and their daughters in the earth's crust, atmosphere and cosmic radiation.
NEUTRON	An elementary particle with no electric charge which combines with protons to form an atomic nucleus.
PROTON	An elementary particle with positive electric charge. The amount of protons in an atomic nucleus determines the chemical element.
RADIOACTIVE CONTAMINATION	The undesirable presence of unsealed radioactive materials on surfaces, in air or in water.
RADIOACTIVE DECAY	The decay of a radionuclide by the spontaneous transformation of the nuclides, at a rate represented by the half-life. The rate is expressed as the activity in becquerel, Bq, indicating the number of transformations per second.
RADIONUCLIDE	A species of atom characterised by the number of protons and neutrons (and sometimes by the energy state of the nucleus), and which emits ionising radiation. It is described by the element and the total amount of protons and neutrons (eg caesium-137).
RADON	A naturally occurring radioactive element and the heaviest noble gas. Radon-222 and Radon-220 (also called thoron) are the most important isotopes.
REPORTING LEVEL	Value below which average Activity levels are not quoted exactly in this Monitoring Report.
RESIDUAL BETA	Gross beta activity minus potassium-40 (40 K), which is the major natural beta emitting component in surface water.
SIEVERT	See equivalent Dose and Effective Dose.

European Commission

EUR 31768 - Environmental Radioactivity in the European Community 2015 - 2020

Edited by: B. M. Rood, S. Martino, A. Guglielmelli, J. C. De La Rosa Blul, M. De Cort, T. Tollefsen, M. Marin Ferrer, S. Vanzo, M. A. Hernandez Ceballos, G. Cinelli, M. Sangiorgi, E. Nweke, L. De Felice, P. V. Tognoli; European Commission, Joint Research Centre (JRC), Ispra, Italy and Petten, The Netherlands
V. Tanner, European Commission, DG Energy (DG ENER), Luxembourg

Luxembourg: Publications Office of the European Union

2023 – 322 pp. – 21,0 x 29,7 cm

EUR – Science for Policy series – ISSN 1831-9424 Radiation protection – ISSN 2315-2826

ISBN 978-92-68-10117-9

DOI 10.2760/761877

Quarterly average values of radioactivity levels in airborne particulates, surface water, drinking water, milk and mixed diet are reported for the twenty-eight countries of the European Union (sparse and dense network) for the years 2015-2020.

GETTING IN TOUCH WITH THE EU

In person

All over the European Union there are hundreds of Europe Direct centres. You can find the address of the centre nearest you online (<u>european-union.europa.eu/contact-eu/meet-us_en</u>).

On the phone or in writing

Europe Direct is a service that answers your questions about the European Union. You can contact this service:

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),
- at the following standard number: +32 22999696,
- via the following form: european-union.europa.eu/contact-eu/write-us_en.

FINDING INFORMATION ABOUT THE EU

Online

Information about the European Union in all the official languages of the EU is available on the Europa website (<u>european-union.europa.eu</u>).

EU publications

You can view or order EU publications at <u>op.europa.eu/en/publications</u>. Multiple copies of free publications can be obtained by contacting Europe Direct or your local documentation centre (<u>european-union.europa.eu/contact-eu/meet-us_en</u>).

EU law and related documents

For access to legal information from the EU, including all EU law since 1951 in all the official language versions, go to EUR-Lex (<u>eur-lex.europa.eu</u>).

Open data from the EU

The portal <u>data.europa.eu</u> provides access to open datasets from the EU institutions, bodies and agencies. These can be downloaded and reused for free, for both commercial and non-commercial purposes. The portal also provides access to a wealth of datasets from European countries.

